10,806 research outputs found

    Influence of humidity on granular packings with moving walls

    Full text link
    A significant dependence on the relative humidity H for the apparent mass (Mapp) measured at the bottom of a granular packing inside a vertical tube in relative motion is demonstrated experimentally. While the predictions of Janssen's model are verified for all values of H investigated (25%< H <80%), Mapp increases with time towards a limiting value at high relative humidities (H>60%) but remains constant at lower ones (H=25%). The corresponding Janssen length is nearly independent of the tube velocity for H>60% but decreases markedly for H=25%. Other differences are observed on the motion of individual beads in the packing. For H=25%, they are almost motionless while the mean particle fraction of the packing remains constant; for H>60% the bead motion is much more significant and the mean particle fraction decreases. The dependence of these results on the bead diameter and their interpretation in terms of the influence of capillary forces are discussed.Comment: 6 pages, 6 figure

    Microarcsecond VLBI pulsar astrometry with PSRπ\pi II. parallax distances for 57 pulsars

    Full text link
    We present the results of PSRπ\pi, a large astrometric project targeting radio pulsars using the Very Long Baseline Array (VLBA). From our astrometric database of 60 pulsars, we have obtained parallax-based distance measurements for all but 3, with a parallax precision of typically 40 μ\muas and approaching 10 μ\muas in the best cases. Our full sample doubles the number of radio pulsars with a reliable (\gtrsim5σ\sigma) model-independent distance constraint. Importantly, many of the newly measured pulsars are well outside the solar neighbourhood, and so PSRπ\pi brings a near-tenfold increase in the number of pulsars with a reliable model-independent distance at d>2d>2 kpc. Using our sample along with previously published results, we show that even the most recent models of the Galactic electron density distribution model contain significant shortcomings, particularly at high Galactic latitudes. When comparing our results to pulsar timing, two of the four millisecond pulsars in our sample exhibit significant discrepancies in the estimates of proper motion obtained by at least one pulsar timing array. With additional VLBI observations to improve the absolute positional accuracy of our reference sources and an expansion of the number of millisecond pulsars, we will be able to extend the comparison of proper motion discrepancies to a larger sample of pulsar reference positions, which will provide a much more sensitive test of the applicability of the solar system ephemerides used for pulsar timing. Finally, we use our large sample to estimate the typical accuracy attainable for differential astrometry with the VLBA when observing pulsars, showing that for sufficiently bright targets observed 8 times over 18 months, a parallax uncertainty of 4 μ\muas per arcminute of separation between the pulsar and calibrator can be expected.Comment: updated to version accepted by ApJ: 30 pages, 20 figures, 9 table

    Crack fronts and damage in glass at the nanometer scale

    Full text link
    We have studied the low speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully mastered surrounding atmosphere. By using optical and atomic force microscopy (AFM) techniques we tracked in real-time the crack tip propagation at the nanometer scale on a wide velocity range (mm/s - pm/s and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments reveal also -for the first time- that the crack progresses through nucleation, growth and coalescence of nanometric damage cavities within the amorphous phase. This may explain the large fluctuations observed in the crack tip velocities for the smallest values. This behaviour is very similar to what is involved, at the micrometric scale, in ductile fracture. The only difference is very likely due to the related length scales (nanometric instead of micrometric). Consequences of such a nano-ductile fracture mode observed at a temperature far below the glass transition temperature in glass is finally discussed.Comment: 12 pages, 8 figures, submitted to Journal of Physics: Condensed Matter; Invited talk at Glass and Optical Materials Division Fall 2002 Meeting, Pittsburgh, Pa, US

    Self-Consistent Random Phase Approximation - Application to the Hubbard Model for finite number of sites

    Get PDF
    Within the 1D Hubbard model linear closed chains with various numbers of sites are considered in Self Consistent Random Phase Approximation (SCRPA). Excellent results with a minimal numerical effort are obtained for 2+4n sites cases, confirming earlier results with this theory for other models. However, the 4n sites cases need further considerations. SCRPA solves the two sites problem exactly. It therefore contains the two electrons and high density Fermi gas limits correctly.Comment: 17 pages, 17 figure

    Many-body correlations in a multistep variational approach

    Get PDF
    We discuss a multistep variational approach for the study of many-body correlations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. Purpose of these diagonalizations is that of searching for the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    Dynamic charge density correlation function in weakly charged polyampholyte globules

    Full text link
    We study solutions of statistically neutral polyampholyte chains containing a large fraction of neutral monomers. It is known that, even if the quality of the solvent with respect to the neutral monomers is good, a long chain will collapse into a globule. For weakly charged chains, the interior of this globule is semi-dilute. This paper considers mainly theta-solvents, and we calculate the dynamic charge density correlation function g(k,t) in the interior of the globules, using the quadratic approximation to the Martin-Siggia-Rose generating functional. It is convenient to express the results in terms of dimensionless space and time variables. Let R be the blob size, and let T be the characteristic time scale at the blob level. Define the dimensionless wave vector q = R k, and the dimensionless time s = t/T. We find that for q<1, corresponding to length scales larger than the blob size, the charge density fluctuations relax according to g(q,s) = q^2(1-s^(1/2)) at short times s < 1, and according to g(q,s) = q^2 s^(-1/2) at intermediate times 1 < s 0.1, where entanglements are unimportant.Comment: 12 pages RevTex, 1 figure ps, PACS 61.25.Hq, reason replacement: Expression for dynamic corr. function g(k,t) in old version was incorrect (though expression for Fourier transform g(k,w) was correct, so the major part of the calculation remains.) Also major textual chang

    Lattice models and Landau theory for type II incommensurate crystals

    Full text link
    Ground state properties and phonon dispersion curves of a classical linear chain model describing a crystal with an incommensurate phase are studied. This model is the DIFFOUR (discrete frustrated phi4) model with an extra fourth-order term added to it. The incommensurability in these models may arise if there is frustration between nearest-neighbor and next-nearest-neighbor interactions. We discuss the effect of the additional term on the phonon branches and phase diagram of the DIFFOUR model. We find some features not present in the DIFFOUR model such as the renormalization of the nearest-neighbor coupling. Furthermore the ratio between the slopes of the soft phonon mode in the ferroelectric and paraelectric phase can take on values different from -2. Temperature dependences of the parameters in the model are different above and below the paraelectric transition, in contrast with the assumptions made in Landau theory. In the continuum limit this model reduces to the Landau free energy expansion for type II incommensurate crystals and it can be seen as the lowest-order generalization of the simplest Lifshitz-point model. Part of the numerical calculations have been done by an adaption of the Effective Potential Method, orginally used for models with nearest-neighbor interaction, to models with also next-nearest-neighbor interactions.Comment: 33 pages, 7 figures, RevTex, submitted to Phys. Rev.
    corecore