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Within the one-dimensional Hubbard model linear closed chains with various numbers of sites are consid-
ered in the self-consistent random phase approxima8@RPA. Excellent results with a minimal numerical
effort are obtained fo(2 +4n)-site cases, confirming earlier results with this theory for other models. However,
the M-site cases need further consideration. The SCRPA solves the two-site problem exactly. It therefore
contains the two-electron and high-density Fermi gas limits correctly.
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[. INTRODUCTION the present authors and collaborators have been working on a
nonlinear extension of the RP&Ref. 9 which has shown
The standard random phase approximat®RPA) is one  surprisingly accurate results in a number of nontrivial

of the most popular many-body approaches known. It wasnodels!® It is called the self-consistent RRISCRPA and
invented in condensed matter physisse, e.g., Ref.)land can be obtained from minimizing an energy-weighted sum
has subsequently spread to almost all branches of physicajle. Therefore the s-RPA which is perturbative in the sense
including atomic physic$, molecular physicé, plasma that it sums a certain class of diagratise bubblesis up-
physics? relativistic field theory, nuclear physic§, and graded in the SCRPA to a nonperturbative variational theory
many more. The definition of the s-RPA is not uniform, de-though it is in general not of the Raleigh-Ritz type. A strong
pending on whether exchange is included or not. We undetonus of this extension of the s-RPA is that it generally pre-
stand it—e.g., as in nuclear physlesas the small-amplitude serves its positive features as conservation laws and restora-
limit of time-dependent Hartree-FockfDHF) theory and tion of symmetries as well as numerical tractability, since it
therfore with exchange. Its popularity probably stems fromleads to equations of the Schrédinger typ#n this paper we
its conceptual simplicity, its numerical tractabilitiy spite of ~ want to apply this theory to the Hubbard model for strongly
some serious problems in finite-size systgnasd most of correlated electrons. Because of its necessarily increased nu-
all its well-behaved properties concerning fulfillment of con- merical complexity over the s-RPA, we first want to consider
servation lawgWard identiey Goldstone theorem, and res- finite clusters in reduced dimensions. Before going into the
toration of spontaneously broken symmetries. Though therdetails, let us very briefly repeat the main ideas of the
exist respectable general theorisge, e.g., Refs. 7 and,8 SCRPA.
any practical attempt to go beyond this basic HF-RPA One way of presentation is to outline its strong analogy
scheme conserving these properties turned out to be technidth the Hartree-Fock-BgoliuboyHFB) approach to inter-
cally extremely demanding and no well-accepted general andcting boson fields™ andb. The HFB canonical transforma-
practical extension has emerged so far. Nevertheless, thi®n reads
standard RPA has also quite serious shortcomings and it is
desirable to overcome them. One of the most prominent is its + +
violation of the Pauli principle, often paraphrased as the qV=2 Ui, 0 = vi,,bi. (1)
“quasiboson approximation.” It is most critical for only mod- '
erately collective modes or when the self-interaction of the
gas of quantum fluctuations becomes important as in ultrasfhe amplitudesi andv can be determinéd from minimiz-
mall finite quantum systems. Since a couple of years two ofng the following mean energ¢energy-weighted sum rule
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(0[[a,.[H,q1]/0) index combinations than two-times particle and two-times
w,= W hole need extra considerations. That will be done in the main
vy text. This is, in short, the SCRPA scheme which, as HFB
whereH is the usual many-body Hamiltonian with two-body theory, is obviously non-linear, since the elemedtsnd B
interactions and the ground std® is supposed to be the in Eq.(7) become functionals of th& and) amplitudes. We
vacuum to the quasiboson operatqggs—i.e., want to point out that no bosonization of fermion pairs is
_ operated at any stage of the theory.
a,(0)=0. S We want to apply this scheme to the Hubbard model of
With this scheme and the usual orthonormalization condistrongly correlated electrons which is one of the most wide-
tions for the amplitudes andv, which allows the inversion Spread models to investigate strong electron correlations and
of Eq. (1), one derives standard HFB thebryith no need to high-T. superconductivity. Its Hamiltonian is given by
construct|0) explicitly. Of course, in this way the fact that _ + PN
the HFB theory is a Raleigh-Ritz variational theory is not H '_t%: CioCio * UEi: Mi My, (10)
manifest but the scheme has the advantage to be physically e
transparent and to lead to the final equations with a minimunwherec/, and Cj, are the electron creation and destruction
of mathematical effort. operators at sité and thefy,=c/ c;, are the number opera-
For the SCRPA we follow exactly the same route. Wetors for electrons at sitewith spin projectiono. As usualt is
replace in Eq(1) the ideal boson operators by fermion pair the nearest-neighbor hopping integral dhthe on-site Cou-
operators of the particle-holg@h) type and form an ansatz lomb matrix element. In this exploratory work, we will limit

: 2

for a general transformation of ph-fermion pairs:

t_ T t
Ql= 2 (Apakan - Vpdiap).,
ph

(4)

ourselves to the simplest cases possible; i.e., we will con-
sider closed chains in one dimensidiD) with an increasing
number of sites at half filling, starting with the two-site prob-
lem. It will turn out that the next case of four sites is a

with |V>:QI|O> an excited state of the spectrum. In analogyconfiguration with degeneracies which cause problems in the

with Eg. (2) we minimize a mean excitation energy

_ (0[Q..[H.Q}T]|0)
©(0[Q.Qlllo)

, (5

with |0}, in analogy with Eq(3), the vacuum to the operators

Q,. i.e.,
Q,[0)=0, (6)
and arrive at equations of the usual RPA tfpe:
s )el) o
-8 A \y) Y
with
_(Ollafan[H.a},ay11/0)
php'h = - npN/nh’ “ny ,
B = <0|[’aﬁap,[H,a§,ap,]]|0>. 9

V'nh - np\/nhr - np,

Here we supposed to work in a single-particle basis which

diagonalizes the density matriratural orbit$,
(0laa|0) = NS, 9

and therefore then’s are the occupation numbers. For
with a two-body interaction, Eq$8) only contain correlation
functions of the(a'a) and(a'aa'a) types and, since Eq6)

SCRPA, as do alld(n=1,2,3, ..) configurations in 1D. We
therefore will postpone the treatment of these cases to future
work and directly jump to the case of six-sites and only
shortly outline at the end why the four-site case is unfavor-
able and how the problem can eventually be cured. In this
work we will stop with the six-site case, considering it as
sufficiently general to be able to extrapolate to the more-
electron case. In this way one may hope to approach the
thermodynamic limit in increasing the number of sites as
much as possible. Let us mention that an earlier attempt to
solve the SCRPA in 1D in the thermodynamic limit in a
strongly simplified version of the SCRPA, the so-called
renormalized RPAr-RPA), produced interesting resuft3.

In detail our paper is organized as follows: in Sec. Il we
present the two-site case with its exact solution. In Sec. I
we outline the six-site case with a detailed discussion of the
results, and in Sec. IV we present the difficulties encountered
in the four-site case and how, eventually, one can overcome
them. Finally in Sec. V we give our conclusions together
with some perspectives of this work.

II. TWO-SITE PROBLEM

In this section we will apply the general formalism of the
SCRPA outlined in the Introduction to the two-site problem
at half filling—i.e., two electrons with periodic boundary
conditions. This case may seem trivial; the fact, however, is
that such popular many-body approximations as the s-RPA,
GWM Gutzwiller wave functior? the two-particle self-
consisten{ TPSQ approach by Vilk, Chen, and Trembl&,

admits the usual RPA orthonormalization relations for theetc., do not yield very convincing results in this study case,

amplitudesXx and )% the relation(4) can be inverted and
with Eq. (6) the correlation functions in E¢8) be expressed
by X and ).

However, to be complete, occupation numbeng

=(0laja 0y and two-body correlation functions with other

whereas it has recently been shown that the SCRPA solves
two-body problems exactff:'1-1"We again will briefly dem-
onstrate this here for the two-site problem.

First we will transform Eq.(10) into momentum space.
With the usual transformation to plane waves;,
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:(1/V’N)Eka;'0e“i'7<i, this leads to the standard expression Q,/RPA) =0. (19

for a zero-range two-body interaction: Because of the orthonormality relations

_ A~ U T ~ T ! '
H= 2 (6 mfiko* o 2 &, o085 DR CARVAVAET I

k,o k,p.g,0
(11
whereﬁ;,(,:ag S is the occupation number operator of the g (XeYs = Vo) =0,
mode (E,a) and the single-particle energies are given by
€=-2t=5_, cogky) with the lattice spacing set to unity. S X, =YV = 8,0,
For our further considerations it is convenient to trans- P M
form Eq.(11) to HF quasiparticle operators Visve switch to
1D S (ALY, - At =0, (20)
ano=blo e=Dbp (12) v

where h and p are momenta below and above the Fermione can invert Eq(18) to obtain
momentum, respectively, so thiat,/HF)=0 for all k where -

|HF) is the Hartree-Fock ground state in the plane-wave ba- J,=V1-(M,) > (X.Q,+¥:Qh),
sis. For the two-site problem with periodic boundary condi- v

tions we then write, after normal ordering, the Hamiltonian

(12) in the following way: I =) (21)
H=Hypr +Hg=o0+ Hg=rs (13)  The operatorst and 1-M,, form aSU(2) algebra of spin

with operators and, therefore, using the Casimir relation we obtain
Hup=Epe+ 2 [~ €Ny, o+ €N, o], M, = 23,3, (22

a

In this way we can calculate with Eq19) the following
expectation values:

U U
61:—t+5, 62:“'5' (14) +
(35,97 =1 =-M )1 =M 2 V2V,
Hemo = = T =T )(Fi =T ) (15)
=0 = 5 Wy, 1 ™ ey, 1)y, = Ty 1) -
2 2 1 2 L <J0/J;> = \/<1 _MU’><1 _M0'>E XZ"XZ"
u +\ [ 1— +
Homr == 5 (31 + 3D + 3D, (16)

B30 = V(A -M )1 =M VX,
and J;=by b, ,, I =(J,)", andﬁki,(,:bif(,bi,(,, where we in- v
troduced the abbreviation “1” and “2” for the two momenta

k,=0 andk,=- of the system, respectively. The HF ground (3,3 = VL =M, Y1-M,)>, XLy, (23
state is|HF)=b, ;b; [vac) and the corresponding energy is v
given by with
U
HF _ - =
ENF = (HF|H|HF) = - 2t + > (17) 23 P
o (24)

The RPA excitation operator corresponding to E4). can, 1+ 2Ev|y;|2

because of rotational invariance in spin-space, be separated

according to spin-single{S=0, charge¢ and spin-triplet We will see that in order to close the system of SCRPA
(S=1) excitations. The latter still can be divided into spin- equations, expectation valuésl ;M) will also be needed.
longitudinal (S=1,m;=0) and spin-transverse(S=1,m It is easy to see that we have

=+1) excitations. Let us first consider the charge- and spin-

longitudinal sectors. For later convenience we will not sepa- M,M,=2M, (25
rate them and write, for the corresponding RPA operator, and
QI =K + XIK] - VK, - VK], (18)
R MM, =43035,3,,3, (o # o). (26)

whereK:=J://1-(M,), M,=Tiy,+M,,, and the mean val-
ues(---y are always taken with respect to the RPA vacuum: With Eq. (21) the expectation value of E§26) gives
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amplitudes and therefore we have a completely closed sys-
tem of equation for the amplitude®, ). With the orthonor-
mality relations(20) we furthermore have

A=A EA A A=A,

(MM o) =41 = (M) (L —(M) X X VIV Yy"

vy’ V1V2
X(Q,Q,Q1,Q1)- 27)

For the calculation of the correlation functions which appear
on the right-hand side of E¢27) one commutes the destruc- B,,=B, =B, B; =B, ,=B
tors Q, to the right and uses E@6), yielding again correla- ' ’ ’ '

tion functions(M,M,.). One then obtains a closed linear and, therefore, the SCRPA equation can be written in the
system of equations for the latter. Details are given in Ap-following form:

pendix A.

(30)

The SCRPA matrix elements can be expressed in the fol- A A B F % &

lowing way: AN A B B XY XY
"B -B -A -A » 1=6) L, |- BD

A =(KLHK D =26+ B, 4, Vi Vi

o -8 -B -A -A/\y i
A =(KLHKID=2t+ B, ), The system (31) has the two positive roots&;
={(A-A")2-(B-B’)? and &,=\(A+A’)?-(B+B’)% The

Ap = (KLHKID =8By,

AL,T = <[KI![H1K'T*]:I> = Bl:T’ (28)

By == (K} [H.KI)=U 2 (XY +X7)),

1<|v|

B, =~ (K.[HKI)=U 2 (ERYUERA%)

1<|v|

U (1-M)(E-M))
2{1-(M)a (M)’

By, =~ ([K;,[H,K[T) = -

By == (K[HKI) =5y, (29)

With our previous relation$23), (24), and(27) we can en-
tirely express the elements of E¢28) and(29) by the RPA

8 T T T

— —- ph -RPA Standard
+——+ ph -SCRPA
Exact

-

-
—_—
—
—_
—
-
-
-
-
—_
-
—

uit

FIG. 1. Excitation energies of the standard R{@ashed lines
SCRPA(crossey and exact solutiofsolid lineg as a function ofJ
in the channels of chargech) and longitudinal spinsp) for the
two-site case.

SCRPA equatioii31) can be solved numerically by iteration,
leading, as expected, to the exact result. This latter fact can
also be seen analytically in noticing that, by symmetry,

1l _ 1l 1_ 1
XT__XL=XSP' yT—_yl=yspu

XZ Xf cha yz yl ych- (32)

Therefore the 4 4 equation(31) decouples into two X 2
equations corresponding to charg@d) and spin(sp). Then

we see that the exact ground-state wave function which con-
tains only up to 2p-2h excitations

10) o (1 +dJHT5)|[HF) (33)

is the exact vacuum to the RPA operators—i.e.,
Qcnsp/RPA =0—under the condition that

Yy
d= <—> = tan(¢).
X chisp

We therfore can express the SCRPA equations by the single
parameterg and obtain the solution analyticallyp to the
solution a nonlinear equation fe#). The solution agrees for

all quantities with the exact result. For example the ground-
state energy is given by

(34)

U
E3CRPA= - 2t cog2¢) + 5[1 - sin2¢)]. (35)
This expression can either be derived directly frgt using
Eq. (33) and(34) or one uses a generalization of the standard
RPA expression for the ground-state enetgy:

1
B B = 5 2 (1= (M€l + E1Ve]

(36)

It is straightforward to verify that expressiof35) and (36)
are identical.
The standard RPA expression are recovered from FLj.
in replacing in all expectation values the RPA ground state
by the uncorrelated HF determinant. In Fig. 1 we compare
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0 ah,(r = bg,a" ap,(r = bp,(rv (38)
T such that, ,/HF)=0 for all k, we can write the Hamiltonian
—os | e in the following way(normal order with respect th', b):
e H=Hye + Higizo + Higi=miz * Higi=2aa + Higl=ms~ (39)
/
It 1| 7 | where
/
/ —-— HF Hiye = B0 + 2 (€4, + €dlis , + €glg , — €11y,
, +  + ph-SCRPA o
ast o A B oA standard
7 T phoReAs - 62?]2,0' - 63ﬁ3,0) ’ (408)
3 3
20 2 n 3 8 Higz0= G2 (g 1 =T )X (i | ~Tin ), (40D)
Uit i=1 j=1

FIG. 2. Ground-state energy in HEot-dashed ling standard
RPA (dashed ling SCRPA(crosses and exact solutiofsolid line) Higj=miz = G{{[(S‘_H,GT + %T,ST) - (S;MT +S;31)

as a function ol in the charge and longitudinal spin responses for ~ . 5
the two-site case. + (‘]21,41 + JST,ST)][(glAl + Ssl,ﬁi) B (Si,zi + Sl,?d)

+ _
the standard RPA with the SCRPA and exact results for the + gy 0 + I 511 + .04 (409
excitation energies and in Fig. 2 the corresponding ground- ~ N ~
state energies together with the HF values are shown. Fronhlg=2ma = GUL(S5; 41 = Sy.20) + (1151 + Jap 11+ T3 61
these figures one should especially appreciate the long way + - + - +
the SCRPA has gone from the s-RPA to recover the exact 361,21 Say,5 = 1,30 + (Jsy1 ¥ 1,0+ Jg 31
result. For instance it is clearly seen that the instability of the +Jy 6)1} +C.C}, (400
s-RPA atU=2 is, as expected for such a small system, an
artifact and is completely washed out by the self-consistent H,_ = G[(J], ¢ + J5; 5 + J5; 1) + C.CI(J7, ¢ +J5
treatment of quantum fluctuations contained in the SCRPA a B HLeL e sl Al HeL el
approach. +J34) +C.Cl, (409
Without explicit demonstration let us also mention

that the SCRPA in the spin-transverse channel withWlth the definition of operators

Q)= X7 5D} b] + A7 15 b bl =V 5 by by = Vpp by @s T = B} D

well as in the particle-particle channel wiQ"=Xbl, b}

- )by b,; also gives the exact solution for the two-site prob- Joho = Pnobp o \];h’(l_: ( \];h’(r)T

lem. How thepp-SCRPA works can be seen in Ref. 10 where

for the pairing problem the two-particle problem is also S{[,YU= bfr,(rbv,m with 1>1 31—,“’: (ST',U)Tv (41)

solved exactly.

The fact that the SCRPA solves the two-site problem exgnd
actly is nontrivial, since other well-known many-body
approache&}-16as already mentioned, so far failed to obtain
this limit correctly.

lll. SIX-SITE PROBLEM

After this positive experience with the two-site problem
we next will consider the one-dimensional six-sites case, as
for the four-site case problems appear needing particular u
considerations to be outlined in Sec. IV. We again consider €= e=t+ PX €=2t+ X
the plane-wave transformation explained in Sec. Il with the
corresponding Hamiltonian in momentum spat#). In the
first Brillouin zone -w<k< m we have forN=6 the follow- G=
ing wave numbers:

(42)

: _m _om The level scheme is shown in Fig. 3. The hole states are
k=0, ko= 3’ k3‘_§' labeledh={1,2,3 and the particle stateg={4,5,6. The
HF ground state is
S SR B BP S
k,= 2?77 ks = — Z?W kg=— 1. (37) IHF) = al,Tal,laZ,TaZ,ias,Ta&l|_ ). (43
We see that the Hamiltonian for six sites has largely the
With the HF transformation same structure as the one for two sites. It is only augmented
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I 4
k=k =-1t A 1 t_ 1 vt v~
6 Q=2 == -, (47)
: \y = V’m [} [}
k=k ;=-2U3 _ again with the properties

1 1
~
\, | A | A +
sz 1 | 1 ] |V> = Qy|0>! (483)
k=k4=21l;/3 Pd ¢ V 1 V 1
______________ & Q,|0)=0. (48b)
k=K y=-1/3 S | /1\ The matrix elements in the SCRPA equation
:’ \V | A B X X’
k=k,=mt/3 -~ 5 - )\ =&, W
kek,=0  _ _ _ are then of the form
([3,[H,31D
W=7 , (493
FIG. 3. Excitation spectrum of the HF ground stateO for the VA =(Mi) (1 —=(M}))
chain with six sites at half filling and projection of spim=0. The
occupied states are represented by the solid arrows and those not ([3[H, 371D
occupied are represented by the dashed arrows. iir =7 . (49b)
V(L =(M;)) (1 =(M)
by Hig=m3+Hjg=2m3 Which contains theS operators on Since the SCRPA equations have the same mathematical
which we will comment below. structure as the standard RPA, one also has equivalent ortho-

There are three different absolute values of momenturr}lorma"ty re|ationszi(2(i”/’\fi”,—yivyiv/):@v', etc., in analogy

transfers as shown in Table I. Since the momentum transfer Eqs.(20) of the two-site case, This allows Us to invert E
|g is a good quantum number, the RPA equations are bloce%O as. o ; L EQ.
47) and to calculate the expectation values which will ap-

diagonal and can be written down for e value sepa- . :
rat(gly For example, foig|=7/3 we have thaé%ollowing RpPA pear in Eqs(499 and(49D) in complete analogy to E¢23).
y ' The missing expectation valugd/;) can be expressed

operator for charge and longitudinal spin excitations:
P g g P by the X and ) amplitudes in observing thal’ and Jio
:%(Mi—l) form, as in the two-site case, &U(2) Lie alge-

T — v + v + v +
Qig=miz = Xo1,41Kap 21 + X5 4 Ky o) + A3y 5K . . . .. s .
ldf=l3, e bra for spm—% particles. Using the Casimir relation one again

+ X3 5Ks) 31— Vo1.a1Ko1 41 = V5,.4K5 4 obtainsM;=2J/J and thus
= V31.5:Ksp 31 ~ V3,5 K3 5, (44) o ZEVD)HZ 50
Mp)y=———. 50
where 1+2> [V
J We also will need expectation values of
KEO’ h(r: —/m'—ho-— (45) M M _4.J+J_J+J_ f . .
" 1= (Mg iMy=4JiJ; Jjdi - tori # ]
[for M;M;=2M; we can use Eq(50)]. Those can again be
and calculated following the same procedure as outlined in Eq.
(27) and Appendix A.
Moo ho = Moo+ T - (46) In order to solve the SCRPA equations we now practically
have prepared all we need. Nonetheless, at this point we have
We write this RPA operator in shorthand notation as to discuss a limitation of our RPA ansa#4) which is not

absolutely necessary but which turned out to be convenient

TABLE |. The various momentum transfers in the six-site for numerical reasons. The fact is that our RPA ansatz is
case. restricted to ph and hp configurations, as this is also the case
in standard RPA. In the latter case this is a strict consequence

2m T of the use of HF occupation number$ andnp with values
== lal= lal=3 zero or one, respectively. In the SCRPA case with a corre-
lated ground state the occupation numbers are different from
51—qg=-2m/3 61— Qg1=—7 42— qu=+m/3 zero and one and priori there is no formal reason not to
41— qu=+27/3 52— Qgp=—1 53— Gsa=—1/3 include into the RPA operator also pp and hh configurations
62— qoy= + 277/ 3 43 Q=+ of the formala, =b/b, andala, =-b/ b, Such terms are
63— Qez=—27/3 usually called scattering or anomalous teffhg/ith rounded

occupation numbers the SCRPA equati¢asT=0) are for-
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mally and mathematically equivalent to standard RPA equapling scheme and it is intuitively understandable that, since
tions at finite temperature where also pp and hh componentach channel is summing specific correlations, one cannot
are to be included, in principf The inclusion of those scat- mix the channels implicitly without perturbing the balance of
tering term&%1°[the S terms in Eq.(39)] usually is of littte  the minimization procedure which is done channel by chan-
quantitative consequenékput entails, however, the impor- nel. It can also be noticed that, neglecting Sieerms inH,

tant formal property that, as for the standard RPA, thethe channel coupling disappears.

energy-weighted sum rule is fulfilled exactly!® In spite of We here give for the transfeg|==/3 the totality of the

this desirable feature, we had to refrain from the inclusion ofelements of the matrix SCRPA4 and 3, just as was used in
the scattering configurations in this work because the factorthe numerical calculation. For others transfers there will be
y1-(M,) by which the SCRPA matrix is dividefsee Eqgs. analogous expressions. Indeed with the abbreviations

(499 and (49b)] can become very small in these cases and . L

this perturbed the convergence process of the iterative solu- i=1=(21.41), i=2=(2L4]),
tion of the SCRPA equations. Though we do not exclude that
a more adequate numerical procedure could be found to sta- i=3=(31,51), i=4=(3],5]),

bilize the iteration cycle, we decided to postpone such ahe elements of matriced and B are given by
investigation, because, as already mentioned and as will be

shown later, the influence of the scattering terms is, as found (Io1 41(J3 5, + 32 20
. ; 4 s 1= €, — €, — 2G2LA"3L5, T ©4].2]

already in other studi€'s,very small. We will shortly come 1,1= €7 € _ ;

S ; . 1-(Magy)

back to this discussion when presenting the results for the

energy-weighted sum rule below. As a consequence and for

consistency we then also will have to disregard &terms Ay = (1 —Mag)(1 —Mpg)))

of the Hamiltonian(remember that also in standard RPA ’ v’(1—<M24¢>)(1—(M24J))’

these terms do not contribyteUnder these conditions we

then obtain a completely closed systemof SCRPA equations. Az 1= Ag1= Agp=As,=0,

For completeness we give some examples of SCRPA matrix

elements which correspond to the ans@# for |q|=/3: _ _
(U151 + Ja1,20 32,4

A, = <[J£¢,4¢[H,JZT,2T]]> Az2= €4~ €= 2G 1-(My,)) ’
bt (1 _<M24,¢>)
_ _ — - +
= €= &= G{2J;; 41T 5, + 32y 2)) Asz= €5~ €3~ ZG<J3T’5T1(J_22ANL| - J;l’gl» :
+ (31,41 + 320,601 50+ 3160+ Jay.1) I ,2)) 35
+((J5p,41 + I21,5)[(J1) 6, + J2) 50 + I3, A= G ((1 -M3s5,)(1 -M3s)))
+CCDHL=(Mag ), (519 T (Mas (L~ (Mgs )|
3 4[H,3; - -
. ([J2),4)[H, 3 211D oz en 2G<(J2T'4T + 35 50355 (529
V(L =(M2 )(1 =(Mgg7)) 44T 1-(Mgzs)) '
=G{{(1 ~Mpg )(1 = Mpq))) N
- - B a1(J5) 4+
+{(Jar.21 = J61.21) 1.0, = 2160 By,=- 26¢ 27"”1( Z?I\/il >51’3l)> :
_ _ —(Maa;
+ <(‘]ZT,ST - ‘];T,ZT)(‘]SLAL -Jo 50}
XL = (Mg (L= (Mg )} 42 By 1=B31=B42=0843=0,
(51b) B, .= ((1 =My )(1 =Mgs)))
The other matrix elements can be elaborated along the “1m ~(Mas )L =(Mgg1))’
same lines. Of course in the approximation where the expec-
tation values in Eqs(513 and(51b) are evaluated with the (T a+ 35 )35 0}
HF ground state the usual matrix elements of the standard B, ,= - 2G~—2L4l 5131 -2L.41
RPA are recovered. We should also mention that in expres- ' 1-(Maq)
sions (5138 and (51b) expectation values such as, for ex-
ample, <J1TV4TJLY1¢> which involve momentum transfers Bao=G (1 -Mgz5)(1 =My, )))
3,2~

other than the one under consideratitm|=/3 in the spe-
cific example must be discarded. That this implicit channel
coupling cannot be taken into account without deteriorating _ _ .
the quality of the SCRPA solutions is an empirical law which Baaz— ZG<J3T,5T(‘]3i,5i +Jay2))
was established quite sometime &§¢t.is part of the decou- 33 1-(Mss;)

V- (Mg N(1 =(M3s,)) '

085115-7
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lal=r lql=2n/3
35 T T T T T T 6 T T T T
- — —- ph -RPA standard
3F Exact
+——+ ph -SCRPA
25 /S e -
2 Jet gt T e ———
e/t
15
1 — — - ph -RPA standard N
Exact N\
05 [ * *Ph-SCRPA \\ ]
\
\
0 1 1 1 1 l 1 1
0 0.5 1 15 2 25 3 35

uit

FIG. 4. Energies of excited states in the standard RPA, SCRPA,
and exact cases as a functionlbfor six sites with spin projection
ms=0 and for|g|=. States of the charge response and those of the
longitudinal spin response are denoteddbyandsp, respectively.  sharp phase transition point of the standard RPA which is an
artifact of the linearization.

In Fig. 7 we show the ground-state enefgge Eq.(36)]

FIG. 5. Same as Fig. 4 but fdg|=27/3.

((J31.5: * Ja1.2093,.5))
1-(Mgs))

64’4: -2G (52b)

. _ ECFPR B -2 62X A~ (M) (53
Let us add that the matrice$ and B are symmetric and that v i
the expectation value§--) in Egs. (529 and (52b) can be
expressed in an analogous way as the expectation vi@Bes
and(27) by the amplitudesy, ).

The structure of the self-consistent matrix elemeb)

as a function ofU. In addition to the exact, SCRPA, and
s-RPA values we also show the HF energy. Again we see that
the SCRPA is in excellent agreement with the exact solution.

and(52b) is also quite transparent: the bare interaction whichThe standard _RPA is also good for low values @fbut -
survives in the limit of the standard RPA is renormalized—s’tr_Ongly _deterlorate_s close to the lowest phase transition
i.e., screened—by two-body correlation functions which areocl’:'nt Wh'.Ch occutrhs n tht¢q|—7(rjch_a?nel ?tu_tlzt/?' fThe th
calculated self-consistently. The general structure of thd!" ENErgies, on the contrary, deviate quite strongly from the

scheme is in a way similar to the one proposed by Trembla)‘?xaCt values.

and co-workers® however, the details of the expressions and 4 4-”;16 readfer certtalnly h?S dreLnarked tgat our Rlet_ansatlz
the spirit of derivation are different. One can also interpret( ) has so far not separated charge and spin excitations. In

our theory as a mean-field theory of quantum fluctuations a@e two-site problem this was automatically and exactly the

this was done in Ref. 9.

Let us now come to the presentation of the results. In
Figs. 4, 5, and 6 we display the excitation energies in the 5 T T T T T
three channelfy|=m, 27/3, and«/3 as a function otJ/t.

lql=n/3

The exact values are given by the solid lines, the SCRPA
ones by crosses, and the ones corresponding to the standard
RPA by the dashed lines. We see that in all three cases the
SCRPA results are excellent and a strong improvement over
the standard RPA. As expected, this is particularly important
at the phase transition points where the lowest root of the &t
standard RPA goes to zero, indicating the onset of a stag-
gered magnetization on the mean-field level. It is particularly
interesting that the SCRPA allows one to go beyond the
mean-field instability point. However, contrary to the two-
site case where the SCRPA, in the plane-wave basis, solved
the model for all values obJ, here at some valudd >U,,

the system “feels” the phase transition and the SCRPA stops
to converge and also deteriorates in quality. Up to these val-
ues ofU the SCRPA shows very good agreement with the
exact solution and in particular it completely smears the

085115-8
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4 T T T — T 0.006 T T T T T
7
Exact /’/
— — - ph RPA Standard P 0.005 |-
+——+ ph SCRPA P
5 ¢ —-— HF /« 1
A 0.004 -
4 ”
. - o8
,/
Z
Egt ¢ | £ 1 € o003 f
,//
4
# 0.002 |
//
. L J
7
0.001 -
8 . . . A . 0
0 0.5 1 1.5 2 2.5 3 0

un

FIG. 7. Energy of the ground state in the HF, standard RPA, FIG. 9. The ratiof=(R-L)/R of the energy-weighted sum rule
SCRPA, and exact cases as a functiorofor six sites with spin  in the charge response for the six-site case.
projectionmg=0.

including theSterms is fulfilled in the SCRPA3°However,

case. However, here, since we did not considerSfopera-  neglecting them gives a slight violation. Considering the ex-
tors in the Hamiltonian or the RPA operator, spin symmetryact relation
is violated. On the other hand, this permits us to evaluate the
importance of theS operators. Normally the eigenvectors of L=R, (55)
the RPA matrix should be such that for chai@gh) excita- .
tions the operatordy, +Jg, and J;, +J;, can be factored with
whereas for spin(sp excitations the combinationsi;m
—J;hl and Jp,, —Jy,, hold. Because of our violation of spin
symmetry, this factorization is not exact. To have a measure

L= (E, - Eo)|(+|F|0)|?

of this violation we plot in Fig. 8 the ratio => (E, - E0)|<0|Q‘q‘,VF|O>|2
vl
|XShT| B |X;h¢|
r= s o (54) = > (E, - Ep)[{O[[Qiq .. F1IO)?
|XphT| + |Xphl| V%I( 0)|< |[Q|q\, ]| >|
For exact spin symmetry, should be zero. From Fig. 8 we - E-E 1 —M.(x"+W)|? 56
see that the violation is on the level of a fraction of 1%. This, v,%l( v~ Eo) i%) X (A0 (563

therefore justifiesa posteriori having neglected the scatter-

ing terms(S termg in the Hamiltonian and RPA operator. A

further indication that terms are not important comes from R= }<0|[F,[H,F]]|O>
the energy-weighted sum rule. We know that the sum rule 2

0.006 : , : : i . => V1-M; X |1 -Mi(Aijr - By, (56b
/ i(la i’ (ql)

/ with

— (=9 /
——- @h=G5) /

F=> (J+H.c), (57)
i(|al)

we trace in Fig. 9 the ratig=(R-L)/R. Again we see that
the violation is on the level of a fraction of 1%, confirming

0.002 | the very small influence of the scattering terms.

A further quantity which crucially tests the ground-state
correlations is the occupation numbers. We have no direct
access to them; however, we will use the so-called Catara

0 approximation for their evaluatioft:

Moo = (Ppe) = 2 (Tphodpho) = 2 (1= (Mppo) 2 [ Vil
FIG. 8. The ratior [Eq. (54)] as a function of the interactiod h h v
for the ph excitation2, 4) and (3, 5 in the channe|g|=/3. (583
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0.1 I
k=t ___ 1 A
V ]
|
0008 I k=_1t/2\ I
S~ ~ 1 A A - aF_
PP A T
0.06 | k=m/2.~ V I |
n,, ,
k=0
0.04 --- \V
002 L FIG. 12. Level spectrum fod =0 for the half-filled chain with
four sites with spin projectioms=0. The occupied states are rep-
resented by the solid arrows and those not occupied are represented
0

by the dashed arrows.

FIG. 10. Occupation numbers as function of the interactibn the extension to cases with sites number B+th n>1
Co p . works. For such cases it does not make sense anymore to
for various values of the momentafor states above the Fermi laborate the Hamiltonian in its detailed form as diven in E
level. For each approximation, s-RPA and SCRPA, the occupatio 9 g

numbers are represented in increasing order liké—r, ﬁO). Th|§| eprICII e)l(preSSIOn W&;Sr?nly given ;Ofmake C]!.ea.\r
—27/3,27/3). Let us notice that the modele=27/3 and k= € detailed internal structure of the approach for a de inite
~27/3 are degenerate. example. In the general case with many sites one would just

take the form(11) of the Hamiltonian, calculate the double
commutators as needed in Ed8), and then express the
Nho = (ihe) = 2 (Tpnodpne? = 1 = 2 (L= (Mpp ) 2 [Vil2. resulting correlation functions by thé and ) amplitudes.
P p v That such a program is feasible in terms of analytic work and
(58b numerical execution was demonstrated in our earlier work on
the multilevel pairing modé? where cases up to 100 levels
We show these quantities in Figs. 10 and 11 in comparisoi/€re treated. However, this number was not considered an
with the exact values and the ones of the standard RPA. WéPPer limit. Though the present model is slightly more com-
again see the excellent performance of the SCRPA. plicated, we think that a generalization to the case of many

Concluding this section we can say that the expectatio§ites is perfectly possible. It needs, however, some invest-
we had from the two-site case, with its exact solution, havénent which is planned for the future. This also concerns the
very satisfactorily also been fulfilled in the six-site case.D=2 case. Another question to ask is whether the degrada-
However, in spite of the very good performance of thetion of the SCRPA results going from té=2 to theN=6
SCRPA, there is the limitation that the SCRPA, in the sym-case does not go on consideriNg 10,14, etc.? One again
metry conserving basis of plane waves used here, cannot 588y Cite the experience with the multilevel pairing méflel
employed in the strong limit. One also may wonder how Where also theN=2 case turned out to be exact in the
SCRPA but not the other cases. However, M2 cases
showed more or less the same degrees of accuracy: excellent
results of SCRPA up to the phase transition point and dete-
rioration beyond. Since this behavior has also been found in
simpler model$? we think that this is a generic feature of
the SCRPA and that this behavior will also translate to the
case of the present model.

Another problem for further work is how to continue the
present theory into the strong-coupling regime. Of course,
there exists the possibility to perform the SCRPA in the
symmetry-broken basis, but details and how to match with
the symmetry-unbroken phase must still be worked out. Also
the inclusion of higher-order operators, as will shortly be
discussed in the next section, may be an interesting direction
in this respect.

D, o9t

|
|
|
+—+ SCRPA | :
|
|
|
|

0.8 1 1 1 I

IV. FOUR-SITE PROBLEM

FIG. 11. Occupation numbers as a function of the interadtlon

for various values of the momenkafor the holes states. For each

approximation, s-RPA and SCRPA and exact solution, the occupa- 1he problem of the four-site case is easily located in re-
tion numbers are represented like0,7/3,-w/3. Let us notice garding the level scheme of Fig. 12ee also Ref. 22 dealing
that the mode&= /3 andk=-/3 are degenerate. with the attractive Hubbard model in JDWe see that the

A. Symmetry-unbroken case
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Iql=m/2 Igl=rt

— — - ph RPA standard — — - ph RPA standard
+ ph SCRPA + ph SCRPA

0 1 2 3 4
un

FIG. 13. Energies of excited states with the standard RPA, FIG. 14. Energies of excited states with the standard RPA,
SCRPA, and exact solution for four sites with spin projecti;n  SCRPA, and exact solution for four sites with spin projection
=0 and for|g|=7/2 in the symmetry-unbroken basis. =0 and for|g|= in the symmetry-unbroken basis.

Fermi energy coincides with the second level which is halfunbroken basigplane waveg the SCRPA cannot fully ac-
filled. The uncorrelated ground state is therefore degeneratount for the situation.

and excitations with momentum transfef= cost no en-
ergy. On the other hand, for excitations wit=7/2 there is

. S B. Symmetry-broken basis
no problem. The corresponding RPA operator is given by

An analysis of the HF solution shows that, as soortJas

Q\L|=w/2v: Xfangn + XEMKZzT + XfaiKgu + XZMKZzi # 0, the plane-wave state becomes unstable and the system
’ S S s S prefers a staggered magnetization. The general HF transfor-
- y;S,TKB,T - y54,TK24J - yi3,lK13,l - y]2}4,lK24,l' mation can be written as
59
In Fig. 13 we show the results of the s-RPA and SCRPA, C;T 1lu 0 -1 -v a;T
together with the exact solution. We see that the lower exci- o = _E v 1 0 u a | (613
tation is still very well reproduced by the SCRPA, whereas ‘:’J v ?T
for the second excited state the SCRPA only reduces the Cay v 0 1 -v/\a,
difference of the s-RPA to exact by half. The real problem
isshows up for the transfég|=. The corresponding operator C:rw v -1 0 u ah
+ — v v v i~ '
Qg=rmy = X14,TK21,1 + X4 KZl,l + Xzs,Tng,T + Xzs,lng,l C;,i v2lv 1 0 u a;l
i _ T
v - v - v - v - v 0 1 1%
= V141 K1ay = Via, Kia) = Vo3 1Koz = Va3 Ko, - €1, .|

(600  with u=cog®) and v=sin(9)€¢. The minimization of the
ground-state energy, with

The standard RPA produces a doubly degenerate zero mode
independent ofJ as seen in Fig. 14. As compared with the |HF) :aI’Ta’{’la;TaM-), (62)
exact solution, we see that these two zero modes approxi-
mate two very low-lying exact solutions. Unfortunately, be- shows thatp=0 for any value ofU and the angle is ob-
cause of these modes at low energy, the SCRPA could not Bgined from
stabilized. The only possibility consisted in excluding the
components<3,; andK3, in the RPA operator. Then self- tarf(9) - v tarf(9) - 1=0. (63)
consistency was achieved without problem and the result is 2t
shown in Fig. 14. The result of the SCRPA is halfway be-
tween the s-RPA and the exact solution. On the other hand,he occupation numbers are given by
because of the omission of the two lower states, the ground- 1
state energy cannot correctly be calculated in the SCRPA. _ _ _ _* ;
Therefore, for the four-site problem in the symmetry- M1 = Nap =02y = May = 2[1 +sirt(9)],
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0025\
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FIG. 15. Occupation numbers for siteri;,; etn; |, as a func-

uit

tion of interactionU in the symmetry-broken basis.

1
nl,l = n3’l = nZ’T = I’IM = 5 0052(19),
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8 T T T T T T T

— — - ph RPA standard
---- ph SCRPA
Exact

eft 4

atan(U/t)

FIG. 16. Energies of excited states with the standard RPA,
SCRPA, and exact solution as a functionWffor four sites with
spin projectionms=0 in the symmetry-broken basis.

and the ground-state energy in the SCRPA whereas this is

and shown in Fig. 15 which illustrates the spontaneous symsqo, for the standard RPA. This may be an interesting result

metry breaking for any value dfl. For U—o we have a

perfect antiferromagnet.

in view of the importance of the so-called “plaquettésée,
e.g., Ref. 23 in high-T. superconductivity. Nevertheless,

We can now perform a SCRPA calculation in the gyen though one plaquettéour site3 may reasonably be
symmetry-broken basis. The RPA operators are given by  gescribed, the present approach cannot account for the situ-

T — qw + v + A\ -
Q(rv - Xl<r,3(rK3(r,lr)' + X2—0,4—0K4—0,2—0' yl(r,S(rKlr)',E;(r

" -
- y2—0',4—0'K2—a',4—o"

with o=+3. We also have two other excitation operators

T _ + v + v - v -
Qq, = X1y 41Ky 1 + A7) 4 Ky 1) = V1 4Ky a — V14 Ky g

and

ation of many plaquettes in interaction which is the real situ-
ation in 2D. For the future it is therefore very interesting to
develop an extension of the present SCRPA which not only
gives an exact solution for the two-site case but equally for
the four-site case. Such a generalization is possible in includ-
ing into the RPA operator in addition to the fermion pair
operators also quadruples of fermion operators. This is a gen-
eral principle and it has already been demonstrated to hold
true in the case of the simpler Lipkin modélOne could call
such an extension a second SCRPA in analogy to the well-

T _ + + - -
QZV = XZT,szsT,zT + X51,31K31,21 - yZTsTKzT,aT - y5¢,3¢K2¢,3L-

In Figs. 16 and 17 we give the results. The most striking
feature is that the s-RPA and SCRPA are very close and that
the error with respect to the exact solution does not become
greater than 25% for any value &f. Though the improve-
ment of the SCRPA over the s-RPA is very small in each
channel, at the end in the ground-state energy this sums to a
more substantial correction in the right direction for the
ground-state energy. This is shown in Fig. 17 as a function of
atan(U/t). We see that the HF, s-RPA and SCRPA become
exact forU=0 andU —co. In between the SCRPA deviates,
e.g., by 8% from the exact result &1=6 [atanU/t)
=1.4] whereas this deviation is 20% for the s-RPA.
Concluding this section on the four-site case at half filling
we can say that in the symmetry-unbroken basis the SCRPA
is unable to account for some low-lying excitations and
therefore fails to reproduce the ground-state energy as well.

In the symmetry-broken basis the SCRPA gives very little  FIG.

7t

-t

17. Ground-state energies in the HF, standard RPA,

known standard second RPA which involves in addition to
(67) the ph configurations also 2p-2h ones. In the case of many

- HF

—--—- ph -RPA standard
——- ph-SCRPA

— Exact

0 0.2

04 0.6 038
atan(U/t)

1

1.2

14

L6

correction over the s-RPA. However, the maximum error iSSCRPA, and exact solution as a functioredan(U/t) for four sites
not greater than 25% for all values Offor the excited states with spin projectionmg=0 in the symmetry-broken basis.
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plaquettes this second SCRPA would then constitute a selbf plane waves. Of course, in the case of six sites, the
consistent mean-field theory for plaguettes. SCRPA is not exact anymore. However, it is shown that the
results are still excellent for all quantities considered: excited

states, ground state, and occupation numbers. Contrary to the

V. DISCUSSION, CONCLUSIONS, AND OUTLOOK two-site case, the SCRPA solutions in the plane-wave basis

In this work a many-body approach which was essentiallyc2nNnot be obtained for.aII values Uf Somewhgare after the
developed in the nuclyear p)rqysﬁ)gs context in recent Jewas ){::)omt where, as a function df, the first mean-field instabil-
been applied to the Hubbard model for a finite number oi;ty shows up, the SCRPA also starts to deteriorate and in fact

) . . oes not converge any longer. Often the mean-field critical
sites. The thepry is an extension of the standard RI_DA, calleaalue ofU is by passed by 20% up to 50% in the SCRPA,
the self-consistent RPA, which aims to correct its well-

= still staying excellent. However, to go into the stroddimit

o ; SO oINS ; Ofle have to introduce the above mentioned quadruple fer-
with |t_s ensuing ylolatlon of the Pauli principle an_d its Per- mion operators or perform a SCRPA calculation in the
turbation theoretical aspect. Of course the appealing featur%%/mmetry—broken basi€. Such investigations shall be left
of the RPA, such as, for instance, fulfillment of sum rules,ior the future. We also gave arguments why we think that,
restoration of broken symmetries, Goldstone theorem, nugoing to theN>6 cases, the precision we found fiN=6
merical practicability, and physical transparency, should beill not deteriorate. We therefore think that our formalism
kept as much as possible. That this is indeed the case witRill allow one to find precise results for system sizes where
the SCRPA has in the past been demonstrated with applican exact diagonalization becomes prohibitive. Problems in
tions to several nontrivial modéfssuch as, for instance, the 2D with closed-shell configurations probably also can and
many-level pairingRichardsoh model® and the three-level shall be considered with the present formalism. Also, as
Lipkin model!* The SCRPA can be derived by minimizing shown in Ref. 10, the extension to finite temperatures is pos-
an energy-weighted sum rule and it is therefore a nonpertussible.

bative variational approach though it is in general not of the We also should mention that in this work - neglected the
Raleigh-Ritz type. The resulting equations are a nonlinea0-called scattering terms of the foafay, or afa, —that is,
version of the RPA type which can be interpreted as thdermion ph operators.where either both indices are above or
mean-field equations of interacting quantum fluctuationsPoth below the Fermi level. In the standard RPA those con-
Though the SCRPA equations are of the Schrodinger typdigurations automatically decouple from the ph and hp
their nonlinearity nonetheless makes their numerical solutioryP&ces- HOWG"‘?“ in the SCRPA with its rou.nded occupation
quite demanding. We therefore thought it indicated to begif'uMPers, there is formally no reason nc(;;[qg)gmclude them. As
with applications to the Hubbard model, restricting them to2 Mater of fact, as shown in earlier work,”to assure the
low-dimensional cases given by a finite number of si,[esfulﬂllmen_t of the f sum rul_e and the restoration of br_oken
where exact diagonalization can easily be obtained. We the%ymmetnes, these scattering terms must be.taken Into ac-
: ount. In the present case, as well as in earlier studies, the

logically started out considering the two-site cd8éth pe-  gcattering terms seem to be almost linearly dependent with
riodic boundary conditions increasing the number of sites {he ordinary ph and hp configurations. This fact induced dif-
by steps of 2—i.e.N=2,4,6,... To oursatisfaction the ficylties with the iteration procedure, since they correspond
SCRPA solves the two-site problem exactly for any value ofg very small eigenvalues of the norm matrix. Though we do
U. This, as a matter of fact, did not come entirely as a surnot exclude the possibility that this difficulty could be mas-
prise, since the same happened already with the pairing prolered with a more refined numerical algorithm, we finally
lem for two fermion&® and indeed it can be shown that the refrained from pursuing this effort, since we could show that
SCRPA solves a general two-body problem exattlit is  the influence of the scattering terms on the results is only on
nonetheless worth pointing out that other respectable manyhe level of a fraction of percent and also theum rule is
body theories fail in the two-particle case, apart from theonly violated on this order.
low-U limit. In short we showed that the SCRPA, as in previous mod-
In the four-site problem at half filling the SCRPA failed. els, performs excellently in the symmetry-unbroken regime
This, as in all 4 (n=1,2,3,..) cases, presents the particu- of the Hubbard model. However, the highdimit and the
lar problem that the system is unstable with respect to thén-site cases need further developements.
formation of staggered magnetization for any finite value of
U and this prevented the SCRPA solution from existing in
the plane-wave basis for particular values of the momentum We are very grateful to B. K. Chakraverty and J. Ran-
transfer|q|. At the end of the paper we indicated that extend-ninger for elucidating discussions. One of(8sS) thanks A.
ing the present RPA ansatz of ph pairs to include quadruplel!. Tremblay for useful information. One of the authors
of fermion operators can solve not only the two-electron butJ.D) acknowledges support from the Spanish DGI under
also the four-electron case exactly. This is particularly inter-Grant No. BFM2003-05316-C02-02.
esting in view of the fact that the four-site cagBaquette
may be very important for the explanation of highsuper- APPENDIX A: PARTICLE-HOLE CORRELATION
conductivity, in considering the many plaquette configura- FUNCTIONS
tions in 2D23 In this work we jumped directly to the six-site We give the commutations rules which will be useful
problem which, as all 2+@cases, causes no particular dif- in the calculation of the correlations functions in the
ficulties in the SCRPA, even in the symmetry-unbroken basigh channel:
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- M; : =—2) 1ot i1
[nyQIr]:E(XiVXV y| y| )1 <M > [M“QV] 23’.% ()(' Q”14-'))I QVl)’
[M;,Q]1=202 (V'Q], + X'Q,). (A1)
V1
-M;

Thus, the following average values can be calculdi=uin-

[QuQu1=3 Ay - X _ :
[ 1-(My)’ muting theQ’s to the righy:

(22 - /27 (1470 - V)y)o)

(Q,Q,Q,Q) =2 (L-Mp)(P-M)), (A2)
Q0 = (1-(My) (1-(M))) )
N " XV3 )(iVo_ yiVsyiVo) ( val XJ}’z_ yj”lyj”z) XVs XVz XVl XVO yilfsyrzyi”ly;fo
(QfQ.,, Q.10 = EJ L) =My (@mMIE-My) - 22, L)
(A3)

Finally, one can express the correlation function according to the amplitudes(RiPAand of (M;M;) as

( Xi’*s Xin - yiVsyin) (X710 = Yriyro)
(QuQ,Q1,Q1) =(Qu{Q,,,Q},]Q) +(Q,,Q1,Q,, Q1) = 22 TERTYIYS

=TIy Ay MM

X3 V0 — y}’sy}’o XL xV2 — y?’ly,"z V3 XVZ X”l XVO y}’sy?zy_”ly?’o
o3 A AN A J‘)<(1M)(1M)>22
i (1=(Mp)) (1-=(Mp) (1=(Mp))
(Ad)
[
APPENDIX B: DENSITY-DENSITY CORRELATION =~ _\'= = -5,
FUNCTIONS <(% oo % nh")<2 Moo 2 e )>
Given that this RPA formalism preserves the number of _ - ~
particles per sping (owing to the fact that the transforma- - (2 Moo > ”h(r>

tion HF does not break the symmetry of gpione has

Ny =Ny + 2 Ty = iy, (B1) ' N<<p2 o2 n“’”’)>' =
p h
and the average vaIL(d;lU):NU:NIZ, which gives us
A )= A ). B2 Thus, for our case, there is the relation
(Moo (Mhe (B2)
p h
On the other hand, one also has
I’\\lo'l’\\lo" = <N0+ zﬁpa_ Eﬁho>(N0” + Eﬁp’o” - Eﬁh’o”>1 (Eﬁm - Eﬁm>(2ﬁp’l - Eﬁh’l)
p h pr n p h pr h
(B3) = 3(2 Foo) — > <ﬁh(,>) =0. (B5)
po ho

with the average valueN(,N(,ozNﬁ N,, which gives us
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