17,301 research outputs found

    High voltage solid-state relay

    Get PDF
    Hybrid microelectronics relay has characteristics significantly superior to conventional solid state relays. Relay provides 2500 Vdc input to output isolation and operates from high threshold logic signal to switch load of 400 Vdc at 2 mA. Technology should be of interest to manufacturers of discrete components

    Perceptions of physiotherapists towards research: a mixed methods study

    Get PDF
    OBJECTIVES: To explore the perceptions of physiotherapists towards the use of and participation in research. DESIGN: Concurrent mixed methods research, combining in-depth interviews with three questionnaires (demographics, Edmonton Research Orientation Survey, visual analogue scales for confidence and motivation to participate in research). SETTING: One physiotherapy department in a rehabilitation hospital, consisting of seven specialised areas. PARTICIPANTS: Twenty-five subjects {four men and 21 women, mean age 38 [standard deviation (SD) 11] years} who had been registered as a physiotherapist for a mean period of 15 (SD 10) years participated in this study. They were registered with the New Zealand Board of Physiotherapy, held a current practising certificate, and were working as a physiotherapist or physiotherapy/allied health manager at the hospital. MAIN OUTCOME MEASURE: The primary outcome measure was in-depth interviews and the secondary outcome measures were the three questionnaires. RESULTS: Physiotherapists were generally positive towards research, but struggled with the concept of research, the available literature and the time to commit to research. Individual confidence and orientation towards research seemed to influence how these barriers were perceived. CONCLUSION: This study showed that physiotherapists struggle to implement research in their daily practice and become involved in research. Changing physiotherapists' conceptions of research, making it more accessible and providing dedicated research time could facilitate increased involvement in the physiotherapy profession

    On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion

    Full text link
    It is shown by the method of renormalized field theory that in contrast to a statement based on a mathematically ill-defined invariance transformation and found in most of the recent publications on growth models with surface diffusion, the coupling constant of these models renormalizes nontrivially. This implies that the widely accepted supposedly exact scaling exponents are to be corrected. A two-loop calculation shows that the corrections are small and these exponents seem to be very good approximations.Comment: 4 pages, revtex, 2 postscript figures, to appear in Phys.Rev.Let

    Monolithic microwave integrated circuit water vapor radiometer

    Get PDF
    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility

    Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Full text link
    Interacting fermions on a lattice can develop strong quantum correlations, which lie at the heart of the classical intractability of many exotic phases of matter. Seminal efforts are underway in the control of artificial quantum systems, that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical pure-state initialisation and readily adhere to an engineerable Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder inherent to solid state has made attempts at emulating Fermi-Hubbard physics on solid-state platforms few and far between. Here, we show that for gate-defined quantum dots, this disorder can be suppressed in a controlled manner. Novel insights and a newly developed semi-automated and scalable toolbox allow us to homogeneously and independently dial in the electron filling and nearest-neighbour tunnel coupling. Bringing these ideas and tools to fruition, we realize the first detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here show how quantum dots can be used to investigate the physics of ever more complex many-body states

    Disordered Electrons in a Strong Magnetic Field: Transfer Matrix Approaches to the Statistics of the Local Density of States

    Full text link
    We present two novel approaches to establish the local density of states as an order parameter field for the Anderson transition problem. We first demonstrate for 2D quantum Hall systems the validity of conformal scaling relations which are characteristic of order parameter fields. Second we show the equivalence between the critical statistics of eigenvectors of the Hamiltonian and of the transfer matrix, respectively. Based on this equivalence we obtain the order parameter exponent α0≈3.4\alpha_0\approx 3.4 for 3D quantum Hall systems.Comment: 4 pages, 3 Postscript figures, corrected scale in Fig.

    Aging in the glass phase of a 2D random periodic elastic system

    Full text link
    Using RG we investigate the non-equilibrium relaxation of the (Cardy-Ostlund) 2D random Sine-Gordon model, which describes pinned arrays of lines. Its statics exhibits a marginal (θ=0\theta=0) glass phase for T<TgT<T_g described by a line of fixed points. We obtain the universal scaling functions for two-time dynamical response and correlations near TgT_g for various initial conditions, as well as the autocorrelation exponent. The fluctuation dissipation ratio is found to be non-trivial and continuously dependent on TT.Comment: 5 pages, RevTex, Modified Versio
    • …
    corecore