10,278 research outputs found

    Molecular abundances and low-mass star formation. I: Si- and S-bearing species toward IRAS 16293-2422

    Get PDF
    Results from millimeter and submillimeter spectral line surveys of the protobinary source IRAS 16293-2422 are presented. Here we outline the abundances of silicon- and sulfur-containing species. A combination of rotation diagram and full statistical equilibrium/radiative transfer calculations is used to constrain the physical conditions toward IRAS 16293 and to construct its beam-averaged chemical composition over a 10-20" (1600-3200 AU) scale. The chemical complexity as judged by species such as SiO, OCS, and H_2S, is mtermedtate between that of dark molecular clouds such as Ll34N and hot molecular cloud cores such as Orion KL. From the richness of the spectra compared to other young stellar objects of similar luminosity, it is clear that molecular abundances do not scale simply with mass; rather, the chemistry is a strong function of evolutionary state, i.e., age

    Optical modulation spectroscopy of hydrogenated microcrystalline silicon

    Get PDF
    The properties of microcrystalline silicon thin films prepared by RF sputtering were investigated by optical modulation spectroscopy at room temperature and the results were correlated with Raman and conductivity measurements. For comparative purposes, a number of good quality PECVD microc-Si:H samples were also investigated. For PECVD samples the OMS signal is very weak, and only measurable for probe beam energies comparable to the gap of amorphous silicon. This indicates the absence of gap states and therefore a very high crystalline fraction, as confirmed by Raman and TEM measurements. In what concerns RF-sputtered samples, different behaviors can be distinguished: Some samples show a low OMS signal which can be attributed either to a high crystallinity (low density of gap states) or to high recombination rates. These two cases can be distinguished by electrical conductivity values and analysis of the Raman spectra. Other samples exhibit a OMS signal similar to a-Si:H and have low conductivity values, consistent with a Raman spectrum typical of a-Si:H.FCT-grant from PRAXIS XX

    Van der Waals forces in density functional theory: perturbational long-range electron interaction corrections

    Full text link
    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a "range-separated hybrid" functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well-adapted to describe van der Waals complexes, like rare gas dimers.Comment: 8 pages, 1 figure, submitted to Phys. Rev.

    On the expressive power of read-once determinants

    Full text link
    We introduce and study the notion of read-kk projections of the determinant: a polynomial fF[x1,,xn]f \in \mathbb{F}[x_1, \ldots, x_n] is called a {\it read-kk projection of determinant} if f=det(M)f=det(M), where entries of matrix MM are either field elements or variables such that each variable appears at most kk times in MM. A monomial set SS is said to be expressible as read-kk projection of determinant if there is a read-kk projection of determinant ff such that the monomial set of ff is equal to SS. We obtain basic results relating read-kk determinantal projections to the well-studied notion of determinantal complexity. We show that for sufficiently large nn, the n×nn \times n permanent polynomial PermnPerm_n and the elementary symmetric polynomials of degree dd on nn variables SndS_n^d for 2dn22 \leq d \leq n-2 are not expressible as read-once projection of determinant, whereas mon(Permn)mon(Perm_n) and mon(Snd)mon(S_n^d) are expressible as read-once projections of determinant. We also give examples of monomial sets which are not expressible as read-once projections of determinant

    Exotic magnetism in the alkali sesquoxides Rb4O6 and Cs4O6

    Full text link
    Among the various alkali oxides the sesquioxides Rb4O6 and Cs4O6 are of special interest. Electronic structure calculations using the local spin-density approximation predicted that Rb4O6 should be a half-metallic ferromagnet, which was later contradicted when an experimental investigation of the temperature dependent magnetization of Rb4O6 showed a low-temperature magnetic transition and differences between zero-field-cooled (ZFC) and field-cooled (FC) measurements. Such behavior is known from spin glasses and frustrated systems. Rb4O6 and Cs4O6 comprise two different types of dioxygen anions, the hyperoxide and the peroxide anions. The nonmagnetic peroxide anions do not contain unpaired electrons while the hyperoxide anions contain unpaired electrons in antibonding pi*-orbitals. High electron localization (narrow bands) suggests that electronic correlations are of major importance in these open shell p-electron systems. Correlations and charge ordering due to the mixed valency render p-electron-based anionogenic magnetic order possible in the sesquioxides. In this work we present an experimental comparison of Rb4O6 and the related Cs4O6. The crystal structures are verified using powder x-ray diffraction. The mixed valency of both compounds is confirmed using Raman spectroscopy, and time-dependent magnetization experiments indicate that both compounds show magnetic frustration, a feature only previously known from d- and f-electron systems

    Triatominae (Hemiptera, Reduviidae) in the Pantanal region: association with Trypanosoma cruzi, different habitats and vertebrate hosts.

    Get PDF
    The transmission cycle of Trypanosoma cruzi in the Brazilian Pantanal region has been studied during the last decade. Although considerable knowledge is available regarding the mammalian hosts infected by T. cruzi in this wetland, no studies have investigated its vectors in this region. This study aimed to investigate the presence of sylvatic triatomine species in different habitats of the Brazilian Pantanal region and to correlate their presence with the occurrences of vertebrate hosts and T. cruzi infection. Methods: The fieldwork involved passive search by using light traps and Noireau traps and active search by visual inspection. The light traps were placed at five selected points along forested areas for seven nights during each of the nine excursions. At each point where a light trap was set, eight Noireau traps were placed in palm trees and bromeliads. Results: In all, 88 triatomine bugs were collected: two and one individuals from light traps and Noireau traps, respectively; three from peridomestic areas; 23 in coati nests; and 59 in thornbird nests. In this study, active search in microhabitats showed higher efficiency than passive search, since 95% of the triatomine bugs were caught in nests. Further, triatomine bugs were only found to be infected by T. cruzi in coati nests. Conclusions: Coati nests might act as a point of convergence and dispersion for triatomine bugs and mammal hosts infected by T. cruzi, thereby playing an important role in the sylvatic cycle of T. cruzi in the Pantanal region

    Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations

    Full text link
    We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence of the occurrence of phase transitions was observed. On top of that, Fe5Si3 was found to compress isotropically, whereas an anisotropic compression was observed in Ni2Si. The linear incompressibility of Ni2Si along the c-axis is similar in magnitude to the linear incompressibility of diamond. This fact is related to the higher valence-electron charge density of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is also related to the layered structure of Ni2Si where hexagonal layers of Ni2+ cations alternate with graphite-like layers formed by (NiSi)2- entities. The experimental results are supported by ab initio total-energy calculations carried out using density functional theory and the pseudopotential method. For Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si are also reported and a possible correlation between the bulk modulus of iron silicides and the coordination number of their minority element is discussed. Finally, we report novel descriptions of these structures, in particular of the predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).Comment: 44 pages, 13 figures, 3 Table
    corecore