4,067 research outputs found

    Clockwise: a mixed-media file system

    Get PDF
    This paper presents Clockwise, a mixed-media file system. The primary goal of Clockwise is to provide a storage architecture that supports the storage and retrieval of best-effort and real-time file system data. Clockwise provides an abstraction called a dynamic partition that groups lists of related (large) blocks on one or more disks. Dynamic partitions can grow and shrink in size and reading or writing of dynamic partitions can be scheduled explicitly. With respect to scheduling, Clockwise uses a novel strategy to pre-calculate schedule slack time and it schedules best-effort requests before queued real-time requests in this slack tim

    From Words to Wires: Generating Functioning Electronic Devices from Natural Language Descriptions

    Full text link
    In this work, we show that contemporary language models have a previously unknown skill -- the capacity for electronic circuit design from high-level textual descriptions, akin to code generation. We introduce two benchmarks: Pins100, assessing model knowledge of electrical components, and Micro25, evaluating a model's capability to design common microcontroller circuits and code in the Arduino ecosystem that involve input, output, sensors, motors, protocols, and logic -- with models such as GPT-4 and Claude-V1 achieving between 60% to 96% Pass@1 on generating full devices. We include six case studies of using language models as a design assistant for moderately complex devices, such as a radiation-powered random number generator, an emoji keyboard, a visible spectrometer, and several assistive devices, while offering a qualitative analysis performance, outlining evaluation challenges, and suggesting areas of development to improve complex circuit design and practical utility. With this work, we aim to spur research at the juncture of natural language processing and electronic design.Comment: 13 pages, 4 figure

    Infinitely-fast diffusion in Single-File Systems

    Get PDF
    We have used Dynamic Monte Carlo (DMC) methods and analytical techniques to analyze Single-File Systems for which diffusion is infinitely-fast. We have simplified the Master Equation removing the fast reactions and we have introduced a DMC algorithm for infinitely-fast diffusion. The DMC method for fast diffusion give similar results as the standard DMC with high diffusion rates. We have investigated the influence of characteristic parameters, such as pipe length, adsorption, desorption and conversion rate constants on the steady-state properties of Single-File Systems with a reaction, looking at cases when all the sites are reactive and when only some of them are reactive. We find that the effect of fast diffusion on single-file properties of the system is absent even when diffusion is infinitely-fast. Diffusion is not important in these systems. Smaller systems are less reactive and the occupancy profiles for infinitely-long systems show an exponential behavior.Comment: 8 pages, 5 figure

    Take the (RN)A-train: Localization of mRNA to the endoplasmic reticulum

    Get PDF
    AbstractProtein translocation into the endoplasmic reticulum (ER) generally requires targeting of mRNAs encoding secreted or membrane proteins to the ER membrane. The prevalent view is that these mRNAs are delivered co-translationally, using the signal recognition particle (SRP) pathway. Here, SRP delivers signal sequence-containing proteins together with associated ribosomes and mRNA to the SRP receptor present on the ER surface. Recent studies demonstrate the presence of alternative pathways to recruit mRNAs to ER or to specific subdomains of the ER independent of SRP or translation. Such targeting of specific mRNAs to the ER subdomains allows the cell to sort proteins before translocation or to ensure co-localization of ER and mRNAs at specific locations. Translation-independent association of mRNAs involves ER-linked RNA-binding proteins and represents an alternative pathway of mRNA delivery to the ER. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum
    • …
    corecore