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Infinitely fast diffusion in single-file systems
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We have used dynamic Monte CailiMC) methods and analytical techniques to analyze single-file systems
for which diffusion is infinitely fast. We have simplified the master equation removing the fast reactions, and
we have introduced a DMC algorithm for infinitely fast diffusion. The DMC method for fast diffusion give
similar results as the standard DMC with high diffusion rates. We have investigated the influence of charac-
teristic parameters, such as pipe length, adsorption, desorption, and conversion rate constants on the steady-
state properties of single-file systems with a reaction, looking at cases when all the sites are reactive and when
only some of them are reactive. We find that the effect of fast diffusion on single-file properties of the system
is absent even when diffusion is infinitely fast. Diffusion is not important in these systems. Smaller systems are
less reactive and the occupancy profiles for infinitely long systems show an exponential behavior.

DOI: 10.1103/PhysRevE.67.046707 PACS nunier02.70.Uu, 02.60-x, 05.50+¢, 07.05.Tp

I. INTRODUCTION analytical description for the productivity of the system are
also derived. We study also how the system behavior

In one-dimensional systems such as zeolites or other psshanges for different sets of kinetic parameters and different
rous structures, diffusion is a very important process. Thdlistributions of the reactive sites. We categorize also inter-
pores of these structures that have the cross section sonRsting results obtained for profile occupancies for different
what larger than a diffusing molecule, are modelecsingle- ~ reactive system and different distribution of the reactive
file systemsin these systems particles move in a concerte@ites.
fashion, as they are unable to cross each other. This process!n Sec. Il we specify our mathematical model with the
of single-file diffusion has different characteristics from or- theoretical background for the analytical and simulation re-
dinary diffusion which affects the nature of both transportsults. We introduce the master equation of the systems in
and conversion by chemical reactions. In R¢f. and[2] Sec. Il B and then we simplify the master equation removing
we have studied the steady-state and transient properties e fast reactions in Sec. Il C. In Secs. IID 1 and I D 2 we
this system. We have analyzed different situations for diffu-Present the simulation methods and we present a DMC algo-
sion rates, and we have compared the results obtained frofthm for infinitely fast diffusion. Different analytical results
simulation and analytical techniques. Often diffusion is aare presented in Sec. lll. In Secs. IV Aand IV B we analyze
very fast process compared to the other reactions in the sy§lifferent simulation results for the case when all the sites are
tem. We are thus interested to be able to model correctly theeactive and when only some of the sites are reactive. We
infinitely fast diffusion. For this purpose, we used dynamicPay special attention to the influence of the length of the pipe
Monte Carlo(DMC) methods14,16—19 with high regular ~and reaction rate constant on the site occupancy of the sys-
diffusion rates, assuming that these rates are high enough M.
model infinitely fast diffusion.

Important work has been done in the area of single-file
systemg3-53] and an overview containing comparisons be-
tween different results in the field is given in REE]. In this In this section we will give the theoretical background for
paper we concentrate on the important properties of infinitelour analytical and simulation results. First we will specify
fast diffusion in a single-file system including conversion. our model and we will derive a finite set of exact rate equa-

Dynamic Monte Carlo methods for very high rates are nottions starting from the master equatid#]. These rate equa-
very efficient and the progress of the simulation is slow.tions are used in order to derive expressions for the produc-
Moreover, considering regular reaction rates it is always aivity in the system for special cases. We show that we can
problem of making a balance between the diffusion ratesimplify the master equation describing the evolution of the
high enough so that the infinitely fast diffusion effects aresystem over time removing fast reactions. We use a dynamic
correctly modeled and the performance of the simulation. Wevionte Carlo method for our simulation results and we give
derive here a different method to simulate infinitely fast dif- the description of a dynamic Monte Carlo-like algorithm for
fusion in single-file systems, starting from the master equainfinitely fast diffusion.
tion.

The rate equations of some special limiting cases and an

Il. THEORY

A. The model

We model a single-file system by a one-dimensional array
*Electronic address: silvia@win.tue.nl (Fig. 1) of sites, each possibly occupied by an adsorbate.
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desorption

adsorption
— . - = J FIG. 1. Picture of a single-file
()] D ® o | .. [ system with two types of adsorbed
/\ particles
adsorption
desorption

This is a model for diffusion and reaction in a one- system in configuratiow at timet andW, is the rate con-
dimensional arrangement of particles with hard-core interacsiant of the reaction changing configuratiérto configura-
tion. The sites are numbered 1,2.,S. A particle can only  +ion «.
move to the right or to the left if an adjacent site is vacant. ¢ probability of the system being in configuratiarat
The sites could be reactive and unreactive and we note Withme t+dt can be expressed as the sum of two terms. The
Npror the number of reactive sites. A reactive site is the onlyfirst term is the probability to find the system already in
place where a conversion may take place. _ configuratione at timet multiplied by the probability to stay
We consider two types of adsorbates,and B, in our i, this configuration duringit. The second term is the prob-
model and we denote withf the site occupation of a site, apjjity 1o find the system in some other configuratignat

Y=(*,A,B), which stands for an vacant site, a site occupiedjme t multiplied by the probability to go frons to « during
by A, or a site occupied b, respectively. We restrict our-

selves to the following monomolecular and bimolecular tran-

sitions.
(a) Adsorption and desorptiodsorption and desorption ~ Pa(t+dt)= 1—dtD, W, | P (1) +dtX, W, P 4(1).
take place only at the two marginal sites, i.e., the left and b b 1)

rightmost sites at the ends of the system,
By taking the limitdt— O this equation reduces to a mas-

A(gas +*n—Ap, ter equation
Ap—A(gas +*,, dP,(t

m m dt( ):2 [W,5P5(t) = WP (1)]. 2
Bmn—B(gas ++*, g

Analytical results can be derived as follows. The value of
a property X is a weighted average over the valugg,
which is the value oK in configurationa,

where subscripten denotes a marginal site. Note that there is

no B adsorptionBs can only be formed by a conversion.
(b) Diffusion In the pipe, particles are allowed to diffuse

via hopping to vacant nearest neighbor sites

(X)=2 PuXa. 3

Apt*np1eo* gt An g, “

From this follows the rate equation,
Bht*n+1-*ntBhia,

. o d({X) dP,

where the subscripts are site indices:1,2, ... S—1. T > T Xo=2, [WeopPs—=Wg,PIX,

(c) ConversionAn A can transform into & at a reactive @ ap
site s

=2, WogPs(Xo=Xp). 4
A,—B,. 7 B b

In the initial state of the system all sites are vacard C. Master equation for infinitely fast diffusion
particles in the pipg since we are interested in the behavior o )
of the system towards equilibrium. We show that we can simplify the master equation remov-

ing the fast reactions. In order to remove fast reactions, we
stop distinguishing between configurations that can be trans-
formed into each other by the fast reactions. We split all
Reaction kinetics is described by a stochastic process. Extonfigurations into disjoint sets such thadf is one such a
ery reaction has a microscopic rate constant associated wifet ande, 8 C;, thena can be transformed intg, or vice
it that is the probability per unit time that the reaction occurs.versa by fast reactions. If we denote
Stochastic models of physical systems can be described by a
master equatiofi54]. B z p
By «,8, we will indicate a particular configuration of the = a
system, i.e., a particular way to distribute adsorbates over all
the sites.P,(t) will indicate the probability of finding the we can derive the master equation fer,

B. Master equation

aeCj
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d’]Ti
dt

dP,

dt

>

aeCj

2, 2, [WagPp~WpaPe]

aeCy | peC

=2, 2 2 [WapPs—WsiPo]

W|th (,()ij :Eaecizﬁecjwaﬂpﬁ/’ﬂj .
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the contribution to the probabilities when no reaction takes
place up to time. The matrixW determines how the prob-
abilities change when a reaction takes place. The second
term represents the contribution to the probabilities when no
reaction takes place between times 0 ahdsome reaction
takes place at tim¢’, and then no reaction takes place be-
tweent’ andt. The subsequent terms represent contributions
when two, three, four, etc., reactions take place. The idea of
the DMC method is not to compute probabilitiBg(t) ex-
plicitly, but to start with some particular configuration, rep-
resentative for the initial state of the experiment one wants to
simulate, and then generate a sequence of other configura-
tions with the correct probability. The method generates a
timet’ when the first reaction occurs according to the prob-
ability distribution 1-exd —R,,t]. At time t’ a reaction

We see that all fast reactions have disappeared; they onkgkes place such that a new configurationis generated by

contribute tow;; , which can be left out of the MEmaster
equation. In order to calculate;; , we need the conditional

picking it out of all possible new configuration® with a
probability proportional toV,,,. At this point we can pro-

probabilities Pz /7. Because we have fast reactions con-ceed by repeating the previous steps, drawing again a time

necting thegs in C; we may assume that thegs are in

for a new reaction and a new configurati@b,56. One of

steady state with respect to each other. Hence, the condinre most popular DMC method in the literature is random

tional probabilityP ;/r; is nothing but the probability of

selection methodRSM) [55]. We use this method to simulate

in steady-state if we restrict ourselves to the configurations ithe master equation of our system.

C.

D. Simulation methods

1. Dynamic Monte Carlo

2. A dynamic Monte Carlo algorithm for infinitely fast diffusion

In Sec. C we have derived the ME distinguishing between
configurations that can be transformed into each other by fast
reactions. Starting from M) we give a DMC algorithm for

DMC methods allow us to simulate the system governedimylating infinitely fast diffusion. For our model, diffusion
by the master equation over time. We simplify the notation ofis mych faster than adsorption and desorption, so the sets are

the master equation by defining a matih containing the
rate constantsW,;, and a diagonal matrixR by R,
=3 Wz, if =, and 0 otherwise. If we put the probabili-
ties of the configuration® , in a vectorP, we can write the
master equation as

dP
—=—(R-W)P,

T (6)

whereR andW are time independent. We also introduce a

new matrixQ, Q(t)=exd —Rt].

This matrix is time dependent by definition, and we can

rewrite the master equation in the integral form
t
P(t)=Q(t)P(0)+f dt'Q(t—t" )WP(t'). (7)
0

By substitution we get from the right-hand side @(t’),
t t ’
P(t)=[Q(t)+J dt’Q(t—t’)WQ(t')Jrf dt'Jt dt”
0 0 0

XQ(t—t"HWQ(t' —t")WQ(t") +--- |P(0). (8)

Suppose at=0 the system is in configuration with
probability P ,(0). Theprobability that, at time, the system
is still in configuration « is given by Q,.(t)P,(0)

all configurations that are connected by diffusion. These sets
can be labeled only by the sequences of partiélendB, as
only the number ofA and B particles and their order in the
pipe is important to distinguish the configurations within a
set. Moreover, all probabilities of configurations within a set
are the same. This means that/P; is the number of con-
figurations inC; . There are E) ways to distributen particles
over S sites. We have then

-1
Ps_(3
T n
with Pze C,,. The summatior z_c_sums over ) con-
figurations. However, for adsorption the left-most or the
right-most site should be vacant. This gives 0§ {) pos-

sible configurations. Each of these configurations gives just
one configuration in the summation over So we get

N

Wads™ 2\Nadsﬁ

S—n
= 2WadsT =2Wy4d1—-0),

n

(€)

where w,ys IS the transition probability for the transition
from a configuration within the set with particles to a con-
figuration within the set witm+1 particles. Similarly, we

=exp(—R,,t)P,(0). This shows that the first term representsfind that

046707-3
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S—1 IIl. ANALYTICAL RESULTS
( n— 1) 2Wged In this section, for some special cases such as low loading
®des= 2Wyes s\ s 2Wesf- (10) limit and fast and slow reactions, we are able to derive some
( ) expressions for the productivity in the steady state. For the
n case of low loading limit we can also derive the rate equa-

) _ tions of the system.
In both expressiong=n/S is the coverage.

The dynamic Monte Carl@OMC) algorithm that we have
used to simulate the system consists of the following steps. . )

(1) Compute the time for the next adsorption or desorp- N this case we can assume that there is never more than
tion. If the current time ig then the time for that process is One particle in the system. The following rate equations then

A. The low loading limit.

t+At with hold:
Inr d<A> _ Z\Nads< > 2Wdes<A> protVVr><<A>
At=— : (11 dt S S ’
2(1— 0)Wygst 20Wyes
d(B 2W,
wherer is a random number picked from the uniform distri- % = 0|es<B) pmt Z(A), (15

bution on the interva{0,1] and @ is the probability that the
marginal site is occupied. With infinitely fast diffusion this
probability is given byd=(Na+ Ng)/S with N, andNg the
number ofA’s andB’s respectively in the system.

(2) Compute for eacl in the system a time when it will
transform into aB. This time is given byt+ 7 with

whereN, is the number of reactive sites in the system. In
the rate equations fok, the contributions to the probability
to have arA in the system is given by the adsorption to an
open end, while the loss to this probability is given by the
desorption to an open end and also by the conversion. The
probability to have an adsorption of a partickeinto the
_ (12) system equals the adsorption rate conswhjs times the
PWix probability to have a site vacant*()) times the probability

to be at one of the marginal sites §/ The probability to
In this expressior® stands for the probability that theis at  have a desorption of ah equals the desorption rate constant
a protonic site. If we number the particles in the system from\W,.s times the probability to have aA in the system(A)
left to right 1,2 ... N5+ Ng, and the sites also from left to times the probability to be at one of the marginal site$)2/
right 1,2 ... ,Sthen the probability that particle numbeis  The last term stands for the probability of a reactioafito

Inr

T=—

at site numbes P;, is given by aB and this equals the probability to have &im the system
((A)) times the reaction rate constaht, times the probabil-
s—1 S-s ity to be at one reactive sitéNG,/S). In the same way we
(n—l) Nat N —n) derive the rate equations f@:
pS— ATTB (13) Here (X) is the probability that there is ax at an arbi-
S trary site. For steady state we get
Na+ Ng
<A> _ 2Wad§Ndes
P for particlen is then the sum of this expression over all (Wadst Waed (2West NprotWry)

protonic sites
NprotVV adsvv X

B)= .
< > (Wads+ Wdes) ( 2Wdes+ N protWrx)

S (16)
2 P35, (14)

From this equation we immediately get the turnover fre-
quency defined as the rate Bfdesorption per reactive site
where §,=1 if site sis protonic.

(3) Change thosés with 7<<At into Bs. 2Wyed B)  2Wged 1—(A))

(4) Determine the next process at the marginal sites. It is @WTOF™ Nprot - Nprot . (17)
an adsorption with probability proportional to {10) W4
and a desorption with probability proportional #,.s. The  If we replace the steady-state expressions®¥andB in this
process is equally likely to occur on the left- or the right- equation we get

hand side.
(5) Change the number of particles in the system accord- _ 2WogdVgedVix
ing to the next process at the marginal sites. wTOF_(WadS+ Weed (2Weest NproWix) (18)
(6) Update the time.
(7) Repeat steps 1-6. We see that in this limit the turnover frequency does not
A validation of this method can be found in Rg57]. depend on the system size.
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Comparing the number ds produced from the analyti-
cal results with the DMC results for the case whéfyys
=0.0033, Wges=0.9967, W,,=0.1, and different distribu-
tions of the reactive sites, we remark that we get similar
results.

<A ><B,>

B. Fast and slowA—B reaction

If the reaction is fast, and there are not too many particles
in the system, then all particles in the system Bee This
means

FIG. 2. Profile occupancies for a system of len§th 30, W4
=0.6, Wy 0.4, andW,,=0.1. The continous lines are the profile
(19 occupancies foA (the lowe) and B (the highey using DMC for
infinitely fast diffusion. The dotted lines are the profile occupancies
for A(the lowe) andB (the highey using DMC with a regular high
rate for diffusion Wy=1600).

Wads

By = ——
< > Wads+Wdes
and

w _ 1 2Wads\N des
TOFF N W . +WwW._°
Nprot Wads+ Wdes

(20

infinitely fast diffusion the DMC method we have defined is

o ) . a correct method to simulate the behavior of the system in
The restriction of not too many particles is necessary, bethe [imit Wyu— .

cause all particles should always be able to reach a protonic |5 Ref.[1] we have seen that for the case when all the
site. This means that sites are reactive, the site occupancies of the system obtained
from DMC simulations show that the system is not homoge-
Wadgs > Ninert (22) neous even for very fast diffusion rates. We find the same
Wagst Waes S effect also using DMC for infinitely fast diffusion, for differ-
. i . ent loadings and for different reaction rate constants.
must hold, whereN;,e is the distance between the marginal  \ye study also the dependence of the occupancy profiles

site and the first protonic site. This relation depends on the, the reaction rate constant at different loadings of the sys-
distribution of the reactive sites. When reaction is fast thisg,.

means that it depends on the distance from the margins to theé Tne simulation results in Fig. 3 show how the shape of the

first protonic site Ninert- _ , profiles changes with reaction raw,, for high and low
Comparing the site occupancy wiBs(19) with results  |5ading of the pipe, when all the sites are reactive. We find
from the DMC simulations, we find that for the reaction ratenat for high loadings, as an effect of the blocking, the

constantsWags=0.033 33, Wges=0.966 67,W,,=10 and all  yigdie sites have the same probability to be occupied for

the sites reactive, the results are similar. _ both fast and slow reactive systems. Only the occupancy of

~ Ifthe reaction is slow, then there are only occasionBEy  marginal sites is influenced by the reactivity, such that in fast

in the system. This means that reactive systems we have a higher probability to hav@ a
Wads

(22) »

A= —2
< > Wads+ Wdes

07

s N A 08 f

All particles in the system will be renewed between two %=
subsequent formations of Therefore K
v

w _ WaadVix
TOF W  +w_ _°
Wads+ Wdes

(23

Comparing the site occupancy withs(22) with results ) )
from the DMC simulations, we find that for the reaction rate  F!G. 3. (@) Dynamic Monte Carlo results for site occupancy for

COTSaISN. 009393 W 096567, 0001 and 1 o f el ot v nd o o 02
i i imi des— Y- — Y.
all the sites reactive, the results are similar. the site occupancy fow,,=0.1, the first dotted line near the con-

tinous line is forW,,=0.2, and the second is fa,,=0.4. (b)
IV. SIMULATION RESULTS AND DISCUSSION Dynamic Monte Carlo results for site occupancy for the case of
infinitely fast diffusion and high loadingW/ 4= 0.8, Wy.—=0.2) of
a system of lengtts=30. The continuous line is for the site occu-
We remark that DMC methods with regular high rates forpancy forw,,=0.1, the first dotted line near the continous line is

diffusion tend to give similar results as DMC method for for W,,=0.2, and the second is fa¥,.= 0.4. In(a) and(b) the lines
infinitely fast diffusion described in Sec. Il D 2. The results at high occupancies correspond ¢B,) and at low occupancies
of these comparisons are in Fig. 2. We conclude that focorrespond tqA,).

A. All sites reactive

046707-5



NEDEA et al. PHYSICAL REVIEW E 67, 046707 (2003

sion rates indicate that the system does not become homoge-
neous. Using DMC for infinitely fast diffusion we find that
also for different distribution of the reactive sites we find a
nonhomogeneous distribution of the particles in the system.
In Fig. 5 we can see that for marginal sites reactive and for
middle sites reactive as well, we have single-file effects also
for infinitely-fast diffusion for different rates of reactions.
We notice that the profiles in case of high loadings are
n very slowly dependent on conversion, both for middle and
for marginal sites reactive. Comparing with simulation re-
FIG. 4. The logarithm of the DMEandom selection method sults for occupancy prof”es in qul], where middle sites
profile occupancies(@,)) for Waqs=0.6, Wees=0.4, W, =0.1, and g marginal sites are reactive, and for regular diffusion rate
when all the sites are reactive, for various system si&es constants in the domain (2 . 10), we notice that the pro-
files are similar. We can conclude that since the effect of
near the marginal sites, and, in consequence, a better produofinitely fast diffusion is absent for single-file systems, the
tivity. For slow reactive systems, the occupancy profiles araliffusion is not so important in these systems.
scaled with reaction rate constant. We notice that the produc- For low loading, when marginal sites are reactive, the
tivity is growing, increasing the reaction rate in case of lowoccupancy profiles are scaled witt,, . We notice that con-
loading systems almost as fast as in the case of the higbersion in Fig. 5 is the rate determining step. In this case, the
loading systems because of the diminished effect of theniddle sites does not have the same occupancy for different
blocking in the pipe. Comparing, for instance, the rate ofreaction rate constants like in the case of all the sites reac-
growth for B production when reaction rate constant is in-tive, but are strongly dependent o, .
creasing from W,=0.1 to W,=04 @B We notice also that the productivity in case marginal sites
B, 0415, in case of ow loading 4-02) and high 1% 19961% 5 0wt et Pereasig e racton e
loading (#=0.8), we find almost the same rate of growth in for instance, the rate of growth f@ productionB,, o, when

both the cases, and that is 0.5. tion rat nstant is increasing fr —01 toW
In Fig. 4 we have the logarithmic shape of the occupancyr_e"’lC on rate constant Is increasing fraM,=0.1 to Wy,

' : =0.4, in case of low loadingd=0.2) and high loading
profiles for A and B. These profiles show that smaller sys- . o
tems are less reactive as leAs are inside the pipe. This |—0.2|3),(;/_ve fm% t:?a_t t?e ratethof gr?vr\]/t_hhcﬁf prccj)_ductlvtl)tégt
explains the faster decrease(df,) for small systems in Fig. ow loadings (0.3) is larger than at high loadings (0.25).

4. For infinitely long systems we expect to have straight lines b'\l/'\{hetn vf\{e dhaAve middle sites rtlaac_:ttlve V_\Ifﬁ have(;ng?e_rt pr_ob—
corresponding to an exponential decreas€Aqf). apiity o find AS near margina; sites. 'ne productivity 1
smaller than in all other cases. The profiles are again scaled

with W, for low loadings. For high loadings and middle
sites reactive, the profiles for different conversion rates are

For all the sites reactive, in papiel], we have shown that almost similar, so the productivity can only be increased in
even wherWgss— o, DMC results with regular high diffu- this case by increasing the number of reactive sites.

In(<A>)
& b N b h A b A A

o
@
o
I
~N
S
N
[

B. Only some of the sites reactive

<A p><B,>

<Ap><B;>

<A, ><B,>

FIG. 5. Dynamic Monte Carlo results for site occupancy for the case of infinitely fast diffusion. The firgatand (b) are for the case
of 5 marginal sites reactive at each end and the last(tvand(d) for the case of 10 middle sites reactive. The first figure is for the case
of low loading W,4 0.2, Wy.s=0.8), and the second is for high loading/{;— 0.8, Wy, 0.2) at different reaction rated\(,=0.1,0.2,
0.4). The third and the fourth figures are for the same parameters as the first and the second, but for the case of 10 middle sites reactive.
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V. SUMMARY

We have used DMC methods and analytical techniques t
analyze single-file systems for which diffusion is infinitely
fast. We simplified the ME removing fast diffusion, and we
have presented a DMC algorithm for infinitely fast diffusion
that simulate this ME. We show that DMC with regular high
rates gives the same results as DMC with infinitely fast dif-

PHYSICAL REVIEW B57, 046707 (2003

the B productivity. We naotice that the number B produced
er unit time in these cases do not depend on the system size.
omparisons between analytical and DMC results reveal
similar results for the productivity.
DMC results show that when all the sites are reactive and
when only some of the sites are reactive, diffusion has no
influence on the single-file properties of the system. Differ-

fusion. The fundamental assumption considered for infinitelyent results for the dependencies of the occupancy profiles
fast diffusion in the analytical results is that all configura-and productivity on the reaction rate constant and different

tions related by diffusion have the same probability.
In the limiting cases such as low loading limit and slow

distributions are categorized. The occupancy profiles show
that smaller systems are less reactive sinceAassare inside

and fast conversions, we are able to derive expressions fdhe pipe.
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