82 research outputs found

    Validation of an adapted Pediatric Sepsis Score in children admitted to PICU with invasive infection and sepsis: a retrospective analysis of a Dutch national cohort

    Full text link
    We validated an adapted form of the Pediatric Sepsis Score (aPSS), a disease-specific severity score available within 60 min of PICU admission, in children with invasive infection. aPSS consist of all components of PSS except lactate. aPSS predicted mortality in children with invasive infection (n = 4096; AUC 0.70 (95% CI 0.67-0.73)) and in children with sepsis (n = 1690; AUC 0.71 (0.67-0.76)). aPSS can be an adequate tool to predict outcome in children admitted to PICU with invasive infection or sepsis, especially in situations where lactate is not available within 60 min. Keywords: Child; Mortality; Organ dysfunction; Score; Sepsis; Septic shoc

    Validation of an adapted Pediatric Sepsis Score in children admitted to PICU with invasive infection and sepsis:a retrospective analysis of a Dutch national cohort

    Get PDF
    We validated an adapted form of the Pediatric Sepsis Score (aPSS), a disease-specific severity score available within 60 min of PICU admission, in children with invasive infection. aPSS consist of all components of PSS except lactate. aPSS predicted mortality in children with invasive infection (n = 4096; AUC 0.70 (95% CI 0.67-0.73)) and in children with sepsis (n = 1690; AUC 0.71 (0.67-0.76)). aPSS can be an adequate tool to predict outcome in children admitted to PICU with invasive infection or sepsis, especially in situations where lactate is not available within 60 min

    Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease: a European survey

    Full text link
    BACKGROUND Brain injury and neurodevelopmental impairment remain a concern in children with complex congenital heart disease (CHD). A practice guideline on neuromonitoring, neuroimaging, and neurodevelopmental follow-up in CHD patients undergoing cardiopulmonary bypass surgery is lacking. The aim of this survey was to systematically evaluate the current practice in centers across Europe. METHODS An online-based structured survey was sent to pediatric cardiac surgical centers across Europe between April 2019 and June 2020. Results were summarized by descriptive statistics. RESULTS Valid responses were received by 25 European centers, of which 23 completed the questionnaire to the last page. Near-infrared spectroscopy was the most commonly used neuromonitoring modality used in 64, 80, and 72% preoperatively, intraoperatively, and postoperatively, respectively. Neuroimaging was most commonly performed by means of cranial ultrasound in 96 and 84% preoperatively and postoperatively, respectively. Magnetic resonance imaging was obtained in 72 and 44% preoperatively and postoperatively, respectively, but was predominantly reserved for clinically symptomatic patients (preoperatively 67%, postoperatively 64%). Neurodevelopmental follow-up was implemented in 40% of centers and planned in 24%. CONCLUSIONS Heterogeneity in perioperative neuromonitoring and neuroimaging practice in CHD in centers across Europe is large. The need for neurodevelopmental follow-up has been recognized. A clear practice guideline is urgently needed. IMPACT There is large heterogeneity in neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices among European centers caring for neonates with complex congenital heart disease. This study provides a systematic evaluation of the current neuromonitoring, neuroimaging, and neurodevelopmental follow-up practice in Europe. The results of this survey may serve as the basis for developing a clear practice guideline that could help to early detect and prevent neurological and neurodevelopmental sequelae in neonates with complex congenital heart disease

    Технология извлечения структур знаний с использованием аппарата расширенных семантических сетей

    Get PDF
    В статье рассматривается задача извлечения из текстов естественного языка структур знаний: информационных объектов («именованных сущностей»), их свойств, связей и фактов участия в действиях. Для этих целей разработан инструментарий: язык представления знаний (расширенные семантические сети – РСС) и их обработки (язык преобразования структур – ДЕКЛ). На этой основе созданы технологии, которые обладают следующими особенностями. Из текстов извлекаются не отдельные объекты (именованные сущности), а структуры знаний, представляющие связи объектов и их участие в действиях и событиях. Для извлечения структур знаний разработан уникальный семантико-ориентированный лингвистический процессор (ЛП), осуществляющий глубинный анализ текстов ЕЯ и выявляющий десятки типов объектов вместе с их структурами. Процессор ЛП управляется лингвистическими знаниями, представляющими собой декларативные структуры и обеспечивающие быструю настройку ЛП на предметную область и язык. Основой лингвистических знаний являются правила, обладающие высокой степенью избирательности при выявлении объектов («сущностей»), средствами устранения коллизий при их применении. Это позволяет минимизировать шумы и потери.У статті розглядається задача знайдення у текстах природної мови структур знань: інформаційних об’єктів («іменованих сутностей»), їх якостей зв’язків і фактів участі у діях. Для цих цілей розроблений інструментарій: мова представлення знань (розширені семантичні мережі – РСМ) та їх обробки (мова перетворення структур – ДЕКЛ). На цій основі створені технології, що мають наступні особливості. З тестів виділяються не окремі об’єкти (іменовані сутності), а структури знань, що представляють зв’язки об’єктів та їх участь у діях та подіях. З метою виділення структур знань розроблений винятковий семантико-орієнтований лінгвістичний процесор (ЛП), що здійснює глибинний аналіз текстів ЕЯ та виявляє десятки типів об’єктів разом з їх структурами. Процесор ЛП керується лінгвістичними знаннями, які представляють собою декларативні структури та забезпечують швидке настроювання ЛП на предметну сферу та мову. Основою лінгвістичних знань є правила, що мають високий ступінь вибірковості при виявленні об’єктів («сутностей»), засобами усунення колізій при їхньому використанні. Це дозволяє мінімізувати шуми та втрати.The paper is devoted to the extracting of knowledge structures from the natural language texts, i.e. information objects (“Named Entities”), their features, relationships, and participation in the actions and events. For this purpose, the language used for knowledge representation (extended semantic networks/ESN) and tools for processing (language for structure conversion LSC) are considered. On this base, the new technologies are proposed. These technologies have the following features: extraction from the texts of knowledge structures that represent the links of named entities and their participation in actions and events. For the knowledge extraction the unique semantic-oriented language processor (LP) are designed. Processor LP provides the deep analysis of NL-texts and revealing set of objects together with their structures. Processor LP is controlled by the linguistic knowledge, which are declarative structures (on ESN) and which provides the quick tuning of LP on subject area and language, both Russian and English

    Early motor outcomes in infants with critical congenital heart disease are related to neonatal brain development and brain injury

    Get PDF
    Aim To assess the relationship between neonatal brain development and injury with early motor outcomes in infants with critical congenital heart disease (CCHD). Method Neonatal brain magnetic resonance imaging was performed after open-heart surgery with cardiopulmonary bypass. Cortical grey matter (CGM), unmyelinated white matter, and cerebellar volumes, as well as white matter motor tract fractional anisotropy and mean diffusivity were assessed. White matter injury (WMI) and arterial ischaemic stroke (AIS) with corticospinal tract (CST) involvement were scored. Associations with motor outcomes at 3, 9, and 18 months were corrected for repeated cardiac surgery. Results Fifty-one infants (31 males, 20 females) were included prospectively. Median age at neonatal surgery and postoperative brain magnetic resonance imaging was 7 days (interquartile range [IQR] 5-11d) and 15 days (IQR 12-21d) respectively. Smaller CGM and cerebellar volumes were associated with lower fine motor scores at 9 months (CGM regression coefficient=0.51, 95% confidence interval [CI]=0.15-0.86; cerebellum regression coefficient=3.08, 95% CI=1.07-5.09) and 18 months (cerebellum regression coefficient=2.08, 95% CI=0.47-5.12). The fractional anisotropy and mean diffusivity of white matter motor tracts were not related with motor scores. WMI was related to lower gross motor scores at 9 months (mean difference -0.8SD, 95% CI=-1.5 to -0.2). AIS with CST involvement increased the risk of gross motor problems and muscle tone abnormalities. Cerebral palsy (n=3) was preceded by severe ischaemic brain injury. Interpretation Neonatal brain development and injury are associated with fewer favourable early motor outcomes in infants with CCHD

    CeRebrUm and CardIac Protection with ALlopurinol in Neonates with Critical Congenital Heart Disease Requiring Cardiac Surgery with Cardiopulmonary Bypass (CRUCIAL):study protocol of a phase III, randomized, quadruple-blinded, placebo-controlled, Dutch multicenter trial

    Get PDF
    BACKGROUND: Neonates with critical congenital heart disease (CCHD) undergoing cardiac surgery with cardiopulmonary bypass (CPB) are at risk of brain injury that may result in adverse neurodevelopment. To date, no therapy is available to improve long-term neurodevelopmental outcomes of CCHD neonates. Allopurinol, a xanthine oxidase inhibitor, prevents the formation of reactive oxygen and nitrogen species, thereby limiting cell damage during reperfusion and reoxygenation to the brain and heart. Animal and neonatal studies suggest that allopurinol reduces hypoxic-ischemic brain injury and is cardioprotective and safe. This trial aims to test the hypothesis that allopurinol administration in CCHD neonates will result in a 20% reduction in moderate to severe ischemic and hemorrhagic brain injury. METHODS: This is a phase III, randomized, quadruple-blinded, placebo-controlled, multicenter trial. Neonates with a prenatal or postnatal CCHD diagnosis requiring cardiac surgery with CPB in the first 4 weeks after birth are eligible to participate. Allopurinol or mannitol-placebo will be administered intravenously in 2 doses early postnatally in neonates diagnosed antenatally and 3 doses perioperatively of 20 mg/kg each in all neonates. The primary outcome is a composite endpoint of moderate/severe ischemic or hemorrhagic brain injury on early postoperative MRI, being too unstable for postoperative MRI, or mortality within 1 month following CPB. A total of 236 patients (n = 188 with prenatal diagnosis) is required to demonstrate a reduction of the primary outcome incidence by 20% in the prenatal group and by 9% in the postnatal group (power 80%; overall type 1 error controlled at 5%, two-sided), including 1 interim analysis at n = 118 (n = 94 with prenatal diagnosis) with the option to stop early for efficacy. Secondary outcomes include preoperative and postoperative brain injury severity, white matter injury volume (MRI), and cardiac function (echocardiography); postnatal and postoperative seizure activity (aEEG) and regional cerebral oxygen saturation (NIRS); neurodevelopment at 3 months (general movements); motor, cognitive, and language development and quality of life at 24 months; and safety and cost-effectiveness of allopurinol. DISCUSSION: This trial will investigate whether allopurinol administered directly after birth and around cardiac surgery reduces moderate/severe ischemic and hemorrhagic brain injury and improves cardiac function and neurodevelopmental outcome in CCHD neonates. TRIAL REGISTRATION: EudraCT 2017-004596-31. Registered on November 14, 2017. ClinicalTrials.gov NCT04217421. Registered on January 3, 2020 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-022-06098-y

    Off-hours admission and mortality in two pediatric intensive care units without 24-h in-house senior staff attendance

    Get PDF
    To compare risk-adjusted mortality of children non-electively admitted during off-hours with risk-adjusted mortality of children admitted during office hours to two pediatric intensive care units (PICUs) without 24-h in-house attendance of senior staff. Prospective observational study, performed between January 2003 and December 2007, in two PICUs without 24-h in-house attendance of senior staff, located in tertiary referral children's hospitals in the Netherlands. Standardized mortality rates (SMRs) of patients admitted during off-hours were compared to SMRs of patients admitted during office hours using Pediatric Index of Mortality (PIM1) and Pediatric Risk of Mortality (PRISM2) scores. Office hours were defined as week days between 8:00 a.m. and 6:00 p.m., with in-house attendance of senior staff, and off-hours as week days between 6:00 p.m. and 8:00 a.m., Saturdays, Sundays and public holidays, with one resident covering the PICU and senior staff directly available on-call. Of 3,212 non-elective patients admitted to the PICUs, 2,122 (66%) were admitted during off-hours. SMRs calculated according to PIM1 and PRISM2 did not show a significant difference with those of patients admitted during office hours. There was no significant effect of admission time on mortality in multivariate logistic regression with odds ratios of death in off-hours of 0.95 (PIM1, 95% CI 0.71-1.27, p = 0.73) and 1.03 (PRISM2, 95% CI 0.76-1.39, p = 0.82). Off-hours admission to our PICUs without 24-h in-house attendance of senior staff was not associated with higher SMRs than admission during office hours when senior staff were available in-house

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease: A European Collaboration

    Full text link
    Background: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. Methods: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. Results: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. Conclusions: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors. Keywords: heart diseases; ischemic stroke; magnetic resonance imaging; pedatrics; risk factors; venous thrombosis; white matter

    Intracranial bleeding due to vitamin K deficiency: advantages of using a pediatric intensive care registry

    Get PDF
    Item does not contain fulltextAIM: To determine the incidence of late intracranial vitamin K deficiency bleeding (VKDB) in The Netherlands using the Dutch Pediatric Intensive Care Evaluation (PICE) registry. METHODS: The PICE registry was used to identify all infants who were admitted to a Dutch pediatric intensive care unit (PICU) with intracranial bleeding between 1 January 2004 and 31 December 2007. Cases of confirmed late intracranial VKDB were used to calculate the incidence for each year. To estimate the completeness of ascertainment of the PICE registry, data from 2005 were compared with general surveillance data from that year. RESULTS: In the 4-year study period, 16/64 (25%) of the infants admitted with intracranial bleeding had late intracranial VKDB, resulting in an overall incidence of 2.1/100,000 live births (95% confidence interval 1.2-3.5). The single-year incidence varied markedly between 0.5 and 3.3 per 100,000 live births. All five ascertained cases in 2005 were identified using the PICE registry, while general surveillance identified only three. CONCLUSIONS: The PICE registry allows ongoing monitoring of the incidence of late intracranial VKDB and appears to be associated with a higher rate of completeness than general surveillance. We propose the use of pediatric intensive care registries to assess the efficacy of national vitamin K prophylactic regimens
    corecore