122 research outputs found

    Canonical form for H-symplectic matrices

    Get PDF

    Collapsing lattice animals and lattice trees in two dimensions

    Full text link
    We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second order transitions from an extended to a collapsed phase in the resulting 2-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into two different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees, but the other is {\it not yet} bond driven and does not contain the Derrida-Herrmann model as special point. Instead it ends at a multicritical point PP^* where a transition line between two collapsed phases (one bond-driven and the other contact-driven) sparks off. The Derrida-Herrmann model is representative for the bond driven collapse, which then forms the fourth universality class on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.Comment: 11 pages, 16 figures, 1 tabl

    Polar decompositions of quaternion matrices in indefinite inner product spaces

    Full text link
    Polar decompositions of quaternion matrices with respect to a given indefinite inner product are studied. Necessary and sufficient conditions for the existence of an HH-polar decomposition are found. In the process an equivalent to Witt's theorem on extending HH-isometries to HH-unitary matrices is given for quaternion matrices

    Knot localization in adsorbing polymer rings

    Full text link
    We study by Monte Carlo simulations a model of knotted polymer ring adsorbing onto an impenetrable, attractive wall. The polymer is described by a self-avoiding polygon (SAP) on the cubic lattice. We find that the adsorption transition temperature, the crossover exponent ϕ\phi and the metric exponent ν\nu, are the same as in the model where the topology of the ring is unrestricted. By measuring the average length of the knotted portion of the ring we are able to show that adsorbed knots are localized. This knot localization transition is triggered by the adsorption transition but is accompanied by a less sharp variation of the exponent related to the degree of localization. Indeed, for a whole interval below the adsorption transition, one can not exclude a contiuous variation with temperature of this exponent. Deep into the adsorbed phase we are able to verify that knot localization is strong and well described in terms of the flat knot model.Comment: 27 pages, 10 figures. Submitter to Phys. Rev.

    Knotting probabilities after a local strand passage in unknotted self-avoiding polygons

    Full text link
    We investigate the knotting probability after a local strand passage is performed in an unknotted self-avoiding polygon on the simple cubic lattice. We assume that two polygon segments have already been brought close together for the purpose of performing a strand passage, and model this using Theta-SAPs, polygons that contain the pattern Theta at a fixed location. It is proved that the number of n-edge Theta-SAPs grows exponentially (with n) at the same rate as the total number of n-edge unknotted self-avoiding polygons, and that the same holds for subsets of n-edge Theta-SAPs that yield a specific after-strand-passage knot-type. Thus the probability of a given after-strand-passage knot-type does not grow (or decay) exponentially with n, and we conjecture that instead it approaches a knot-type dependent amplitude ratio lying strictly between 0 and 1. This is supported by critical exponent estimates obtained from a new maximum likelihood method for Theta-SAPs that are generated by a composite (aka multiple) Markov Chain Monte Carlo BFACF algorithm. We also give strong numerical evidence that the after-strand-passage knotting probability depends on the local structure around the strand passage site. Considering both the local structure and the crossing-sign at the strand passage site, we observe that the more "compact" the local structure, the less likely the after-strand-passage polygon is to be knotted. This trend is consistent with results from other strand-passage models, however, we are the first to note the influence of the crossing-sign information. Two measures of "compactness" are used: the size of a smallest polygon that contains the structure and the structure's "opening" angle. The opening angle definition is consistent with one that is measurable from single molecule DNA experiments.Comment: 31 pages, 12 figures, submitted to Journal of Physics

    Punctured polygons and polyominoes on the square lattice

    Full text link
    We use the finite lattice method to count the number of punctured staircase and self-avoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for each puncture. The increase is 1.5 per puncture when enumerating by perimeter and 1.0 when enumerating by area. A refined estimate of the connective constant for polygons by area is given. A similar set of results is obtained for finitely punctured polyominoes. The exponent increase is proved to be 1.0 per puncture for polyominoes.Comment: 36 pages, 11 figure

    Simulations of lattice animals and trees

    Full text link
    The scaling behaviour of randomly branched polymers in a good solvent is studied in two to nine dimensions, using as microscopic models lattice animals and lattice trees on simple hypercubic lattices. As a stochastic sampling method we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. Essentially we start simulating percolation clusters (either site or bond), re-weigh them according to the animal (tree) ensemble, and prune or branch the further growth according to a heuristic fitness function. In contrast to previous applications of PERM, this fitness function is {\it not} the weight with which the actual configuration would contribute to the partition sum, but is closely related to it. We obtain high statistics of animals with up to several thousand sites in all dimension 2 <= d <= 9. In addition to the partition sum (number of different animals) we estimate gyration radii and numbers of perimeter sites. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and >= 8. In addition, we present the hitherto most precise estimates for growth constants in d >= 3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy. Finally, we discuss the collapse of animals and trees, arguing that our present version of the algorithm is also efficient for some of the models studied in this context, but showing that it is {\it not} very efficient for the `classical' model for collapsing animals.Comment: 17 pages RevTeX, 29 figures include

    Equilibrium size of large ring molecules

    Full text link
    The equilibrium properties of isolated ring molecules were investigated using an off-lattice model with no excluded volume but with dynamics that preserve the topological class. Using an efficient set of long range moves, chains of more than 2000 monomers were studied. Despite the lack of any excluded volume interaction, the radius of gyration scaled like that of a self avoiding walk, as had been previously conjectured. However this scaling was only seen for chains greater than 500 monomers.Comment: 11 pages, 3 eps figures, latex, psfi

    Simulations of grafted polymers in a good solvent

    Full text link
    We present improved simulations of three-dimensional self avoiding walks with one end attached to an impenetrable surface on the simple cubic lattice. This surface can either be a-thermal, having thus only an entropic effect, or attractive. In the latter case we concentrate on the adsorption transition, We find clear evidence for the cross-over exponent to be smaller than 1/2, in contrast to all previous simulations but in agreement with a re-summed field theoretic ϵ\epsilon-expansion. Since we use the pruned-enriched Rosenbluth method (PERM) which allows very precise estimates of the partition sum itself, we also obtain improved estimates for all entropic critical exponents.Comment: 5 pages with 9 figures included; minor change

    Average Structures of a Single Knotted Ring Polymer

    Full text link
    Two types of average structures of a single knotted ring polymer are studied by Brownian dynamics simulations. For a ring polymer with N segments, its structure is represented by a 3N -dimensional conformation vector consisting of the Cartesian coordinates of the segment positions relative to the center of mass of the ring polymer. The average structure is given by the average conformation vector, which is self-consistently defined as the average of the conformation vectors obtained from a simulation each of which is rotated to minimize its distance from the average conformation vector. From each conformation vector sampled in a simulation, 2N conformation vectors are generated by changing the numbering of the segments. Among the 2N conformation vectors, the one closest to the average conformation vector is used for one type of the average structure. The other type of the averages structure uses all the conformation vectors generated from those sampled in a simulation. In thecase of the former average structure, the knotted part of the average structure is delocalized for small N and becomes localized as N is increased. In the case of the latter average structure, the average structure changes from a double loop structure for small N to a single loop structure for large N, which indicates the localization-delocalization transition of the knotted part.Comment: 15 pages, 19 figures, uses jpsj2.cl
    corecore