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Canonical form for H-symplectic matrices

G.J. Groenewald, D.B. Janse van Rensburg and A.C.M. Ran

Dedicated to Rien Kaashoek on the occasion of his eightieth birthday

Abstract. In this paper we consider pairs of matrices (A,H), with A and
H either both real or both complex, H is invertible and skew-symmetric
and A is H-symplectic, that is, ATHA = H. A canonical form for such
pairs is derived under the transformations (A,H) → (S−1AS, STHS)
for invertible matrices S. In the canonical form for the pair, the matrix A
is brought in standard (real or complex) Jordan normal form, in contrast
to existing canonical forms.

Mathematics Subject Classification (2010). Primary 15A21, 15B57,
15A63; Secondary 47B50.

Keywords. Indefinite inner product space, canonical forms,H-symplectic
matrices.

1. Introduction

In this paper we shall consider pairs of matrices (A,H), where A and H
are either real or complex matrices and A is H-symplectic. Recall, when
H = −HT is invertible, a matrix A is called H-symplectic when

ATHA = H.
Obviously, when S is an invertible matrix, then S−1AS is STHS-symplectic.
Under these transformations one might ask: what is the canonical form for
the pair (A,H)? Such canonical forms already exist in the literature, see for
instance [14, 15], and [4, 9, 16, 17, 18] for several slightly different versions.
The canonical forms available in the literature keep H in as simple a form
as possible, and simultaneously bring A into a form from which the Jordan
canonical form of A may be read off more or less easily, with blocks that are
at best of the form Jn(λ)⊕Jn(

1
λ )

−T , where the superscript −T indicates the
transpose of the inverse. (As usual, Jn(λ) denotes the n×n upper triangular
Jordan block with eigenvalue λ.) In some cases blocks in the canonical form
are much more complicated. It is our goal to present here a canonical form
where A is completely in (real) Jordan form.
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In our previous paper [8] we considered matrices A which were unitary
in an indefinite inner product given by a symmetric (or Hermitian) matrix
H. Canonical forms for unitary matrices in indefinite inner product spaces
have been the subject of many papers, we mention here the books [6, 7]
where the canonical forms were deduced from corresponding canonical forms
for selfadjoint matrices in an indefinite inner product space, and the papers
[10, 19, 20, 21, 22, 23], see also [1]. General theory for operators and matrices
in indefinite inner product spaces may be found in the books [2, 3, 6, 7, 11]. We
shall make use of results from [14, 15] where unitary and symplectic matrices
are studied from the point of view of normal matrices in an indefinite inner
product space, and where also canonical forms have been given. Closest to
our development in [8] is the paper [13], although a complete canonical form
is not deduced there. Our point of view is that we wish to bring the matrix A
in (real) Jordan canonical form, and see what this implies for the matrix H
representing the bilinear or sesquilinear form. The start of our considerations
was the simple form for expansive matrices in an indefinite inner product,
developed in [12] and [5].

We consider both the complex case, as well as the real case, where all
matrices involved are assumed to be real. In fact, there are three cases to be
considered:

1. A and H are complex matrices, with H = −H∗ invertible and A∗HA =
H, considered as matrices acting in the space Cn equipped with the
standard sesquilinear form 〈x, y〉 =

∑n
i=1 xiyi,

2. A and H are complex matrices, with H = −HT invertible and ATHA =
H, considered as matrices acting in the space Cn equipped with the
standard bilinear form 〈x, y〉 =

∑n
i=1 xiyi,

3. A and H are real matrices,with H = −HT invertible and ATHA =
H, considered as matrices acting in the space Rn equipped with the
standard bilinear form.

The first case is easy: put H1 = iH, then H1 = H∗
1 is invertible and

A∗H1A = H1. Hence, A is H1-unitary, and a canonical form can be deduced
from canonical forms for unitary matrices in indefinite inner product spaces,
such as given in, e.g., our recent paper [8]. The resulting theorem is presented
in the final section of this paper.

The focus of this paper will be on the two remaining cases above. In the
third case the matrix A will be called H-symplectic; this is the classical case.
The second case is less well-studied. In that case, for lack of a better term,
we shall call the matrix A also H-symplectic, it will be clear from the context
whether we work in Cn or Rn. It should be stressed that in both cases the
space is equipped with the standard bilinear form (so, in particular, in the
complex case not the standard sesquilinear form). A canonical form for the
second case seems to be less well-known, and probably appeared for the first
time in [14].

It is our aim to derive a canonical form with A in standard (real or
complex) Jordan canonical form (see [24]). This would be analogous to the
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canonical form we recently derived for H-unitary matrices in [8]. Of course,
starting from any canonical form where A is not exactly in Jordan canonical
form, we can transform the pair (A,H) via an appropriate basis transforma-
tion S to the pair (S−1AS, STHS) with S−1AS in Jordan canonical form.
This will have the desired effect, although it may not directly produce the
same form for STHS that is achieved in our main results. Indeed, this is
caused by the fact that there are many invertible matrices S such that, when
A is in Jordan canonical form, also S−1AS is in Jordan canonical form. We
shall make use of the freedom this provides in our proofs. The authors thank
the anonymous referee for pointing out that the main results (Theorem 2.6
and Theorem 2.11) of this paper may be derived in this manner from results
in paper [16] (albeit with a considerable amount of work for some of the
cases). However, we have chosen to take a more direct approach here, and
develop the desired canonical form from scratch. To further motivate our
choice to keep A in Jordan canonical form, consider the problem of finding
a function f(A) of the matrix A, which is greatly facilitated by having A in
Jordan normal form.

We can once again use the results on the indecomposable blocks ([14,
15]) to limit the number of cases we have to consider. In particular, Theorem
8.5 in [14] gives a canonical form, but also tells us that the indecomposable
blocks in the complex case are of three types and is given in the following
proposition, where U in [14] is replaced by our A, and Q in [14] is our S.

Proposition 1.1. Let H = −HT be invertible and let A be H-symplectic. Then
there is an invertible matrix S such that

S−1AS = ⊕k
j=1Aj , STHS = ⊕k

j=1Hj , (1.1)

where in each pair (Aj , Hj) the matrix Hj = −HT
j is invertible, and Aj is

Hj-symplectic, and each pair is of one of the following indecomposable forms:

(i) (complex eigenvalues)

Aj = Jnj
(λ)⊕ Jnj

(
1

λ
) with Re λ > Re

1

λ
or Im λ > Im

1

λ
if

Re λ = Re
1

λ
, (1.2)

Hj =

[
0 H12

−HT
12 0

]
;

(ii) ±1, even partial multiplicity,

Aj = Jnj
(±1), with nj even, Hj = −HT

j ; (1.3)

(iii) ±1, odd partial multiplicities,

Aj = Jnj
(±1)⊕ Jnj

(±1) with nj odd, Hj =

[
0 H12

−HT
12 0

]
. (1.4)

The matrices Hj , and in particular the form of the matrices H12 in (1.2)
and (1.4) may be further reduced to a canonical form as is described in the
main results of this paper.
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In [15], Theorem 5.5, the canonical form and the indecomposable blocks
for the real case are described, in that case the first class of blocks for the
complex case has to be subdivided into three classes: when λ is real, when λ
is unimodular but not ±1, and when λ is non-real and non-unimodular (in
the latter case actually there is a quadruple of eigenvalues involved).

In particular, note that odd sized blocks with eigenvalue one or minus
one come in pairs. This was proved in e.g. [14], see in particular Proposition
3.4 there and its proof, and also in [1], Proposition 3.1.

As a consequence of this, all one needs to do to arrive at a canoni-
cal form for the pair (A,H) is to derive canonical forms for each of these
indecomposable blocks.

2. Main Results

In this section we will present the main results of this article. In the first
subsection is the main result for the complex case and in the second subsection
the main result for the real case. Each subsection makes use of a number of
definitions which will be presented first. Most of these definitions have their
origin in the canonical form for H-unitary matrices described in [8].

2.1. Complex case

We start by giving the definitions needed for the main theorem in the complex
case.

Definition 2.1. For odd n > 1 the n+1
2 × n−1

2 matrix Pn =
[
pij

]n+1
2 ,n−1

2

i=1,j=1
is

defined as follows:

pi j = 0 when i+ j ≤ n− 1

2
,

pi n−1
2 −i+1 = (−1)

n−1
2 −i+1 for i = 1, . . . ,

n+ 1

2
− 1,

pn+1
2 j = (−1)j · 1

2
for j = 1, . . . ,

n− 1

2
,

and all other entries are defined by pi j+1 = −(pi j + pi+1 j).

The numbers pij have the following explicit formula, with the under-

standing that

(
j
k

)
= 0 whenever k < 0 or j < k:

pij =
(−1)j

2

((
j + 1

n+1
2 − i

)
−
(

j − 1
n+1
2 − i− 2

))
.

Indeed, it can be easily checked that these numbers satisfy the recursion and
the initial values given in Definition 2.1.
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To get a feeling for how such a matrix looks like, we give P11 below:

P11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1
0 0 0 1 − 9

2

0 0 −1 7
2 − 16

2

0 1 − 5
2

9
2 − 14

2

−1 3
2 − 4

2
5
2 − 6

2

− 1
2

1
2 − 1

2
1
2 − 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Also, P9 is the submatrix of P11 formed by deleting the last column and first
row.

Observe that the recursion for the entries of Pn actually holds for all its
entries, provided the first column and last row are given, or the last column
and first row. Also note that the recursion is the same as the one for Pascal’s
triangle, modulo a minus sign. Take note that the entries are not the numbers
in the Pascal triangle because the starting values are different: if we consider
the entries in the first column and last row of Pn as the starting values, then
the nonzero starting numbers are 1, 1

2 rather than 1, 1 as would be the case
for the Pascal triangle.

Definition 2.2. We also introduce for odd n the n+1
2 × n+1

2 matrix Zn which

has zeros everywhere, except in the (n+1
2 , n+1

2 )-entry, where it has a 1. For
instance, Z5 is given by

Z5 =

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦ .

We shall also make use of the matrices Zn⊗ I2, which is the (n+1)× (n+1)
matrix which has zeros everywhere except in the two by two lower right block

where it has I2, and Zn ⊗K1, where K1 =

[
0 1
1 0

]
, i.e., the (n+ 1)× (n+ 1)

matrix which has zeros everywhere except in the two by two lower right block
where it has K1.

Definition 2.3. Next we introduce for even n the n
2×

n
2 matrix Qn=

[
qij

]n
2 ,n2
i=1, j=1

as follows:

qi j = 0 when i+ j ≤ n

2
,

qi n
2 −i+1 = (−1)

n
2 −i for i = 1, . . . ,

n

2
,

qn
2 j = (−1)j−1 for j = 1, . . . ,

n

2
,

and all other entries are defined by qi j+1 = −(qi j + qi+1 j).
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Again, we give an example: Q10 is given by

Q10 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 1
0 0 0 −1 4
0 0 1 −3 6
0 −1 2 −3 4
1 −1 1 −1 1

⎤⎥⎥⎥⎥⎦ .

Also, Q8 is formed from this by deleting the first row and last column. Note
that the numbers involved, apart from a minus sign, are exactly the numbers
from Pascal’s triangle, so in this case we can even give a precise formula:
when i+ j ≥ n

2 + 1 we have

qij = (−1)j−1

(
j − 1
n
2 − i

)
.

For λ ∈ C \ {−1, 0, 1} we define the following:

Definition 2.4. Let n > 1 be an odd integer, then the n+1
2 × n−1

2 matrix Pn(λ)
is defined as follows:

Pn(λ) =
[
pijλ

n+1
2 +j−i

]n+1
2 , n−1

2

i=1, j=1
(2.1)

where pij are the entries of the matrix Pn introduced above.

For example, P5(λ) is the 3× 2 matrix given by

P5(λ) =

⎡⎢⎢⎣
0 λ4

−λ2 3
2λ

3

− 1
2λ

1
2λ

2

⎤⎥⎥⎦ .

Definition 2.5. Let n > 1 be an even integer, then the n
2 × n

2 matrix Qn(λ)
is defined as follows:

Qn(λ) =
[
qijλ

n
2 +j−i−1

]n
2 , n

2

i=1, j=1
(2.2)

where qij are the entries of the matrix Qn introduced earlier.

With these definitions in place we state now the main theorem for the
complex case. The reader should realize that in Pn, Qn, Zn the subscript n
does not indicate that these are n × n matrices, but that the dimensions of
these matrices depend on n as indicated in the previous definitions.

Theorem 2.6. Let A be H-symplectic, with both A and H complex. Then the
pair (A,H) can be decomposed as follows. There is an invertible matrix S
such that

S−1AS =

p⊕
l=1

Al, STHS =

p⊕
l=1

Hl,

where each pair (Al, Hl) satisfies one of the following conditions for some n
depending on l;

(i) σ(Al) = {1} and the pair (Al, Hl) has one of the following two forms:
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Case 1:

⎛⎜⎜⎝Jn(1)⊕ Jn(1),

⎡⎢⎢⎣
0 0 Zn Pn

0 0 PT
n 0

−ZT
n −Pn 0 0

−PT
n 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ with n odd.

Case 2:

(
Jn(1),

[
0 Qn

−QT
n 0

])
with n even.

(ii) σ(Al) = {−1} and the pair (Al, Hl) has one of the following two forms:

Case 1:

⎛⎜⎜⎝Jn(−1)⊕Jn(−1),

⎡⎢⎢⎣
0 0 Zn Pn(−1)
0 0 PT

n (−1) 0
−ZT

n −Pn(−1) 0 0
−PT

n (−1) 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ with

n odd.

Case 2:

(
Jn(−1),

[
0 Qn(−1)

−QT
n (−1) 0

])
with n even.

(iii) σ(Al) = {λ, 1
λ} with λ ∈ C\{−1, 0, 1} and the pair (Al, Hl) is of the form(

Jn(λ)⊕ Jn(
1
λ ),

[
0 H12

−HT
12 0

])
, where H12 is of one of the following

two forms, depending on whether n is odd or even:

Case 1: n is odd: H12 =

[
Zn Pn(λ)

Pn(
1
λ )

T 0

]
.

Case 2: n is even: H12 =

[
0 Qn(λ)

− 1
λ2Qn(

1
λ )

T 0

]
.

2.2. Real case

First we present a number of definitions needed for the main theorem of the
real case. Take note that analogues of some of the definitions presented earlier
in the complex case are also needed in the real case.

Let γ =

[
α β
−β α

]
with β �= 0 and α2 + β2 = 1. As usual Jn(γ) denotes

the matrix

Jn(γ) =

⎡⎢⎢⎢⎢⎣
γ I2

. . .
. . .

. . . I2
γ

⎤⎥⎥⎥⎥⎦
of size 2n× 2n. We also define the following:

Definition 2.7. For n odd the n+1
2 × n−1

2 block matrix P̃n(γ) with two by two
matrix blocks is defined as:

P̃n(γ) =
[
pijH0(γ

T )
n+1
2 +j−i

]n+1
2 , n−1

2

i=1, j=1
,

where pij are the entries of the matrix Pn as in Definition 2.1, and H0 =[
0 1
−1 0

]
.
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As an example,

P̃5(γ) =

⎡⎢⎢⎣
0 H0(γ

T )4

−H0(γ
T )2 3

2H0(γ
T )3

− 1
2H0γ

T 1
2H0(γ

T )2

⎤⎥⎥⎦
Definition 2.8. For even n the n

2 × n
2 block matrix Q̃n(γ) with two by two

matrix blocks is defined as:

Q̃n(γ) =
[
qij(γ

T )
n
2 +j−i

]n
2 , n

2

i=1, j=1
,

where qij are the entries of the matrix Qn as in Definition 2.3.

Also, for γ =

[
α β
−β α

]
, with α2 + β2 �= 1, we define

Definition 2.9. Let n > 1 be an odd integer, then the n+1
2 × n−1

2 block matrix
Pn(γ) with two by two matrix blocks is defined as follows:

Pn(γ) =
[
pijK1γ

n+1
2 +j−i

]n+1
2 , n−1

2

i=1, j=1
(2.3)

where pij are the entries of the matrix Pn introduced earlier, and K1 =[
0 1
1 0

]
.

For example, P5(γ) is the 3× 2 matrix given by

P5(γ) =

⎡⎢⎢⎣
0 K1γ

4

−K1γ
2 3

2K1γ
3

− 1
2K1γ

1
2K1γ

2

⎤⎥⎥⎦ .

Definition 2.10. Let n > 1 be an even integer, then the n
2 × n

2 block matrix
Qn(γ) is defined as follows:

Qn(γ) =
[
qijK1γ

n
2 +j−i−1

]n
2 , n

2

i=1, j=1
(2.4)

where qij are the entries of the matrix Qn introduced earlier.

With these definitions in place, we state the main theorem in the real
case.

Theorem 2.11. Let A be H-symplectic, with both A and H real. Then the
pair (A,H) can be decomposed as follows. There is an invertible real matrix
S such that

S−1AS =

p⊕
l=1

Al, STHS =

p⊕
l=1

Hl,

where each pair (Al, Hl) satisfies one of the following conditions for some n
depending on l;

(i) σ(Al) = {1} and the pair (Al, Hl) has one of the following two forms:
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Case 1:

⎛⎜⎜⎝Jn(1)⊕ Jn(1),

⎡⎢⎢⎣
0 0 Zn Pn

0 0 PT
n 0

−ZT
n −Pn 0 0

−PT
n 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ with n odd.

Case 2:

(
Jn(1), ε

[
0 Qn

−QT
n 0

])
with n even, and ε = ±1.

(ii) σ(Al) = {−1} and the pair (Al, Hl) has one of the following two forms:

Case 1:

⎛⎜⎜⎝Jn(−1)⊕Jn(−1),

⎡⎢⎢⎣
0 0 Zn Pn(−1)
0 0 PT

n (−1) 0
−ZT

n −Pn(−1) 0 0
−PT

n (−1) 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ with

n odd.

Case 2:

(
Jn(−1), ε

[
0 Qn(−1)

−QT
n (−1) 0

])
with n even, and ε = ±1.

(iii) σ(Al) = {λ, 1
λ} with λ ∈ R\{−1, 0, 1} and the pair (Al, Hl) is of the form(

Jn(λ)⊕ Jn(
1
λ ),

[
0 H12

−HT
12 0

])
, where H12 is of one of the following

two forms, depending on whether n is odd or even:

Case 1: n is odd: H12 =

[
Zn Pn(λ)

Pn(
1
λ )

T 0

]
.

Case 2: n is even: H12 =

[
0 Qn(λ)

− 1
λ2Qn(

1
λ )

T 0

]
.

(iv) σ(Al) = {α± iβ} with α2+β2 = 1 and β �= 0, and the pair (Al, Hl) has

one of the following two forms with γ =

[
α β
−β α

]
:

Case 1:

(
Jn(γ), ε

[
Zn ⊗H0 P̃n(γ)

−P̃n(γ)
T 0

])
with n odd, and ε = ±1.

Case 2:

(
Jn(γ), ε

[
0 Q̃n(γ)

−Q̃n(γ)
T 0

])
with n even, and ε = ±1.

(v) σ(Al) = {α± iβ, (α± iβ)−1} with α2 + β2 �= 1 and β �= 0, and the pair

(Al, Hl) is of the form

(
Jn(γ)⊕ Jn(γ

−1),

[
0 H12

−HT
12 0

])
, where H12

is of one of the following two forms, depending on whether n is odd or
even:

Case 1: n is odd: H12 =

[
Zn ⊗K1 Pn(γ)
Pn(γ

−1)T 0

]
.

Case 2: n is even: H12 =

[
0 Qn(γ)

−(In ⊗−γ−2)Qn(γ
−1)T 0

]
.

Note that the columns of the matrix S in the theorem form a special
real Jordan basis for A. The theorem should be compared with the canonical
form obtained in [15], in particular with Theorem 5.5 there.
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The proofs of Theorems 2.6 and 2.11 will be given in the sections to
follow. In subsection 3.1 part (i) Case 1 and 2 is proved with λ = 1 for the
complex case. Part (ii) follows similarly. Part (iii) needs no proof as this is
equivalent to what has been done in the unitary case.

The real case is proved in Section 4. Parts (i) and (ii) are the same for
the real and complex case, as is part (iii). Part (v) is the same as in the
unitary case, so needs no extra proof. Only part (iv) needs a new proof here,
and this is presented in Section 4 in detail.

The main theorem for the complex H-symplectic case is given in the
final section of this paper without proof, as the proof of this theorem once
again follows directly from the unitary case, see [8].

3. The complex case

We prove the main theorem, Theorem 2.6, of the complex case in the sub-
sections to follow.

3.1. Eigenvalue one

We begin by proving Case 1 (with n odd) of Part (i) of Theorem 2.6.

Proof. We may assume, based on Proposition 1.1, that in this case

A = Jn(1)⊕ Jn(1), H =

[
0 H(0)

−(H(0))T 0

]
for an invertible n × n matrix H(0). By Section 2 in [5], (see also [12]), we

have that H
(0)
i j = 0 for i+ j ≤ n. Moreover, from ATHA = H we have that

Jn(1)
TH(0)Jn(1) = H(0),

and so

H
(0)
i j +H

(0)
i j+1 +H

(0)
i+1 j = 0, for i > 1 and j > 1. (3.1)

Consider S = Ŝ⊕ S̃, where Ŝ and S̃ are n×n upper triangular Toeplitz
matrices, in particular, the upper triangular Toeplitz matrix Ŝ with first row
h1, · · · , hn will be denoted by toep(h1, · · · , hn). Then S−1AS = A, and

STHS =

[
0 ŜTH(0)S̃

−S̃T (H(0))T Ŝ 0

]
,

and note that S is chosen such that (3.1) holds, with H replaced by H ′ =
STHS and H ′

ij = 0 for i+ j ≤ 0. Indeed, we take S̃ = I and will show that Ŝ

can be chosen so that ŜTH(0) has the form given in Part (i) Case 1 of both
Theorems 2.6 and 2.11, that is,

H̃ = ŜTH(0) =

[
Zn Pn

PT
n 0

]
.
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In order to achieve this, it suffices, in view of (3.1) to show that Ŝ can
be chosen such that

H̃n+1
2

n+1
2

= 1, H̃n+1
2

n+1
2 +1 = −1

2
,

H̃n+1
2 +j n+1

2 +j = 0, for j = 1, . . . ,
n− 1

2
,

H̃n+1
2 +j n+1

2 +j+1 = 0, for j = 1, . . . ,
n− 1

2
− 1.

Let Ŝ = toep(h1, · · · , hn), and compute H̃i j = (ŜTH(0))i j :

H̃i j =

⎧⎨⎩ 0 if i+ j ≤ n,

h1H
(0)
i j + h2H

(0)
i−1 j + · · ·+ hi+j−nH

(0)
n+1−j j if i+ j > n.

(3.2)

Put S1 = h1In, and H(1) = ST
1 H

(0). For i+ j = n+1 with i = n+1
2 and

j = n+1
2 , we have

H
(1)
n+1
2

n+1
2

= h1H
(0)
n+1
2

n+1
2

.

Because of the invertibility of H(0) we can take h1 so that 1
h1

= H
(0)
n+1
2

n+1
2

,

and hence H
(1)
n+1
2

n+1
2

= 1. Formula (3.1) with H(0) replaced by H(1), ensures

that all anti-diagonal entries of H(1) with i + j = n + 1 alternates between
+1 and −1.

Now let S2 = toep(1, h2, 0, · · · , 0), and let H(2) = ST
2 H

(1). Then for
i+ j > n we have from (3.2) that

H
(2)
i j = H

(1)
i j + h2H

(1)
i−1 j . (3.3)

In particular, for i+ j = n+ 1 we have

H
(2)
i n+1−i = H

(1)
i n+1−i + h2H

(1)
i−1 n+1−i = H

(1)
i n+1−i,

and so H
(2)
i j = H

(1)
i j for i+ j ≤ n+1. Furthermore, for i+ j = n+2 we have

from (3.3) that

H
(2)
i n+2−i = H

(1)
i n+2−i + h2H

(1)
i−1 n+2−i.

We have H
(1)
i−1 n+2−i = ±1. In particular, for i = n+1

2 (j = n+1
2 +1), we have

H
(2)
n+1
2

n+1
2 +1

= H
(1)
n+1
2

n+1
2 +1

+ h2H
(1)
n+1
2 −1 n+1

2 +1
= H

(1)
n+1
2

n+1
2 +1

− h2,

since H
(1)
n+1
2 −1 n+1

2 +1
= −1. Now we can choose h2 such that H

(2)
n+1
2

n+1
2 +1

=

− 1
2 . A repeated application of (3.1) determines all entries for which i+ j =

n+ 2.
Next, put S3 = toep(1, 0, h3, 0, · · · , 0) and H(3) = ST

3 H
(2). By (3.2) we

have for i+ j > n that

H
(3)
i j = H

(2)
i j + h3H

(2)
i−2 j .
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If i+ j ≤ n+2 this gives H
(3)
i j = H

(2)
i j , since i+ j−2 ≤ n, so that H

(2)
i−2 j = 0.

For i+ j = n+ 3 we obtain from the identity above that

H
(3)
i n+3−i = H

(2)
i n+3−i + h3H

(2)
i−2 n+3−i.

For i = j = n+1
2 + 1, we have

H
(3)
n+1
2 +1 n+1

2 +1
= H

(2)
n+1
2 +1 n+1

2 +1
+ h3H

(2)
n+1
2 −1 n+1

2 +1
.

Since H
(2)
n+1
2 −1 n+1

2 +1
= −1 we can take h3 = H

(2)
n+1
2 +1 n+1

2 +1
to obtain

H
(3)
n+1
2 +1 n+1

2 +1
= 0. Similar as before, this can be used to determine all entries

H
(3)
i j for which i+ j = n+ 3 by using (3.1).

Now put S4 = toep(1, 0, 0, h4, 0, . . . , 0) and H(4) = ST
4 H

(3). From (3.2)
we have for i+ j > n that

H
(4)
i j = H

(3)
i j + h4H

(3)
i−3 j .

As before H
(4)
i j = H

(3)
i j for all i+ j ≤ n+ 3. For i+ j = n+ 4 we have from

(3.2) that

H
(4)
i n+4−i = H

(3)
i n+4−i + h4H

(3)
i−3 n+4−i.

If we take i = n+1
2 + 1, then j = n+1

2 + 2 and we have

H
(4)
n+1
2 +1 n+1

2 +2
= H

(3)
n+1
2 +1 n+1

2 +2
+ h4H

(3)
n+1
2 −2 n+1

2 +2
= H

(3)
n+1
2 +1 n+1

2 +2
+ h4,

since H
(3)
n+1
2 −2 n+1

2 +2
= 1. So, we can choose h4 such that H

(4)
n+1
2 +1 n+1

2 +2
= 0.

By repeated application of updates of (3.1), all entries of H
(4)
i j for which

i + j = n + 4 can now be computed. Now we can continue by induction to
finish the proof, where Ŝ = Sn+1

2
· · · S2 S1. �

Proof of Theorem 2.6 Part (i) Case 2 with n even. We may assume that
A = Jn(1) with respect to the Jordan basis x1, . . . , xn. Denote H = [Hij ]

n
i,j=1

(so Hij = 〈Hxj , xi〉). Analogously to what has been done in [5] and [12], we
already know the following:

Hij = 0 when i+ j ≤ n,

and

Hij +Hi j+1 +Hi+1 j = 0 for i > 1 and j > 1. (3.4)

Furthermore, we have from the fact that H is skew-symmetric that all entries
on the main diagonal are zero and we have that Hij = −Hji.

Let us denote for convenienceHn
2

n
2 +1 := c, where c is complex and c �= 0

because of the invertibility of H. By repeated application of (3.4) we have
along the main anti-diagonal of H the entries alternating between c and −c,
i.e., Hi n+1−i = (−1)

n
2 −i · c. This determines all entries Hij for i+ j < n+2.

Since Hn
2

n
2
= 0 it follows from (3.4) that Hn

2
n
2 +2 = −c. Continuing in this

way gives that for i = 2, . . . , n
2 we have Hi n+2−i = c · qi n

2 −i+2, where qij is
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defined as in Definition 2.3. This then defines all entries ofHij for i+j < n+3.
It is important to note that STHS preserves the previous properties for H.

If we show that there is an invertible S such that S−1AS = A and
the right lower corner block of STHS is zero, then by repeated application
of (3.4) the bottom row of the upper right corner block of STHS has only
entries alternating between −c and c. From this point, again by repeated
application of (3.4), one proves that the upper right corner block of STHS
is given by c ·Qn. Finally take S = 1√

c
I to finish the proof.

It remains to find such an S. We do this by changing the Jordan basis
step by step. First we define a new Jordan basis as follows: let

z1 = x1, z2 = x2, z3 = x3 + h1x1, z4 = x4 + h1x2, . . . .

So, in general we have

z
(i)
j = xj for j = 1, 2 and z

(i)
j = xj + h1xj−2 for j > 2,

with h1 ∈ C. The superscript is because of the iterative process in our proof.
It can easily be verified that this is indeed a Jordan chain. Using this new
Jordan basis, we construct a new form for H. Note that the required S must
satisfy S−1AS = A, so nothing is lost in the Jordan form of A.

In the first iteration step for finding an appropriate S, we show how
to obtain a zero for the entry Hn

2 +1 n
2 +2. Put S1 = toep(1h1 · · · 0), then for

H(1) = ST
1 HS1 we have

(ST
1 HS1)ij = h2

1Hi−1 j−1 + h1Hi−1 j + h1Hi j−1 +Hij .

Hence, for i = n
2 + 1, j = n

2 + 2 we have that

H
(1)
n
2 +1 n

2 +2 = h2
1Hn

2
n
2 +1 + h1Hn

2
n
2 +2 + h1Hn

2 +1 n
2 +1 +Hn

2 +1 n
2 +2

= ch2
1 + (−c)h1 +Hn

2 +1 n
2 +2

= c(h2
1 − h1) +Hn

2 +1 n
2 +2.

There always is a solution in order to obtain H
(1)
n
2 +1 n

2 +2 = 0, since h1 ∈ C.

Now that this entry is zero, we can use (3.4) to compute all entries in H
(1)
ij

for i+ j = n+ 3 in terms of c. In particular we have H
(1)
n
2

n
2 +3 = c from (3.4).

Using this equation again and the fact that H
(1)
n
2 +2 n

2 +2 = 0 (since H is skew

symmetric) gives us H
(1)
n
2 +1 n

2 +3 = 0 and H
(1)
n
2

n
2 +4 = −c.

In the next step of the algorithm we aim to obtain a zero for the (n2 +

2, n
2 + 3)-th entry of H(1). For this let S2 = toep(1 0h2 0 · · · 0), then the

(i, j)-th entry of H(2) = ST
2 H

(1)S2 is given by

H
(2)
ij = (ST

2 H
(1)S2)ij = h2

2H
(1)
i−2 j−2 + h2H

(1)
i−2 j + h2H

(1)
i j−2 +H

(1)
ij .
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For i = n
2 + 2 and j = n

2 + 3 we have

H
(2)
n
2 +2 n

2 +3 = h2
2H

(1)
n
2

n
2 +1 + h2H

(1)
n
2

n
2 +3 + h2H

(1)
n
2 +2 n

2 +1 +H
(1)
n
2 +2 n

2 +3

= ch2
2 + ch2 + h2(0) +H

(1)
n
2 +2 n

2 +3

= c(h2
2 + h2) +H

(1)
n
2 +2 n

2 +3.

This again is solvable with h2 ∈ C and thus we have H
(2)
n
2 +2 n

2 +3 = 0. Using

(3.4) a number of times we have:

H
(2)
n
2 +1 n

2 +3 = H
(2)
n
2 +1 n

2 +4 = 0 and H
(2)
n
2

n
2 +5 = c.

Knowing these entries, we can determine all entries in H
(2)
ij for i+ j = n+4.

Continuing in this way by induction, we obtain a sequence of matrices

Sk, k = 1, . . . n
2 in which each iteration simplifies the form of H

(k)
ij leaving all

previously simplified entries unchanged. Setting S = Sn
2
Sn

2 −1 . . . S2S1 we get

the full lower right corner block of STHS zero. The upper right corner block
will then be the matrix c · Qn. Finally we can scale by setting S = 1√

|c|I.

Since H = −HT , this determines the whole matrix H. �

3.2. Eigenvalue −1

Here we only note that the difference with λ = 1 lies in what we called the

magic wand formula. If A = Jn(−1)⊕ Jn(−1) and H =

[
0 H12

−HT
12 0

]
, then

we see that ATHA = H implies that Jn(−1)TH12Jn(−1) = H12 must hold.
If we let the (i, j)-th entry of H12 be denoted as Hi j , then the last expression
gives us our magic wand formula, i.e.,

Hi j −Hi j+1 −Hi+1 j = 0.

The proof is analogous to the case when λ = 1 for both n odd and n even,
with the exception that Pn and Qn now depend on λ = −1.

3.3. Eigenvalues not ±1

We consider the case where the indecomposable block is of the form

A = Jn(λ)⊕ Jn(
1

λ
).

From the results of Section 3 in [14] we may assume that the corresponding
form for the skew-symmetric matrix H is given by

H =

[
0 H12

−HT
12 0

]
,

for some invertible n × n matrix H12, which does not have any additional
structure. Writing out ATHA = H, we see that this results in

Jn(λ)
TH12Jn(

1

λ
) = H12.
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Now compare Section 4 in [8]. The formula above is the same as formula (38)
there. As a consequence, the canonical form for H12 is given by Theorem 4.1
in [8] and its proof. This leads to statement (iii) in Theorem 2.6 for this case.

4. The real case

In this section we consider the real case. The case where the eigenvalues are
±1 is the same as in the complex case, the case of a real pair of eigenvalues
λ, 1

λ will also be the same as in the complex case. We need to consider only
the non-real eigenvalues.

So, let γ =

[
α β
−β α

]
, with β �= 0, and set

Jn(γ) =

⎡⎢⎢⎢⎢⎣
γ I2

. . .
. . .

. . . I2
γ

⎤⎥⎥⎥⎥⎦ .

4.1. Complex non-unimodular eigenvalues

Proof of Theorem 2.11 Part (v). First we consider non-real, non-unimodular
eigenvalues, so α2+β2 �= 1. By Corollary 3.5 in [14] we may restrict ourselves
to the case where

A = Jn(γ)⊕ Jn(γ
−1), H =

[
0 H12

−HT
12 0

]
for some invertible 2n× 2n matrix H12. Then ATHA = H is equivalent to

Jn(γ)
TH12Jn(γ

−1) = H12.

This, however, is exactly the same as equation (51) in [8]. That means that
the canonical form for this case can be deduced as in Theorem 5.1 in [8]. �

4.2. Complex unimodular eigenvalues

In this subsection we first prove three preliminary lemmas which are needed
for the proof of Case (iv) of Theorem 2.11. Assume that H = −HT is invert-
ible, and Jn(γ)

THJn(γ) = H, where γ is as above, but with α2 + β2 = 1, so
that γT = γ−1. We can rely on quite a number of results of Section 2 in [8],
compare for instance Lemma 2.6 there. We consider A = Jn(γ) with β �= 0

and α2 + β2 = 1. We denote H =
[
Hi,j

]n
i,j=1

, where each Hi,j is a 2 × 2

matrix, and Hj,i = −HT
i,j . We keep the convention that comma separated

subindices indicate that we are working with 2 × 2 blocks. This convention
was used by the authors in earlier papers [5, 8, 12] as well.
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Comparing the corresponding (i, j)-th blocks of ATHA and H, yields

(Jn(γ)
THJn(γ))i,j

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γTH1,1γ, i = 1, j = 1,

γTH1,j−1 + γTH1,jγ, i = 1, j > 1,

Hi−1,1γ + γTHi,1γ, i > 1, j = 1,

Hi−1,j−1 + γTHi,j−1 +Hi−1,jγ + γTHi,jγ, i > 1, j > 1,

= Hi,j . (4.1)

Recall from [8] the definition of E , that is, E = {aI2 + bH0 | a, b ∈ R}

with H0 =

[
0 1
−1 0

]
and also K0 =

[
1 0
0 −1

]
and K1 =

[
0 1
1 0

]
.

For a 2× 2 matrix H =

[
h11 h12

h21 h22

]
we have

γTHγ = H + (h11 − h22)

[
−β2 αβ
αβ β2

]
+ (h12 + h21)

[
−αβ −β2

−β2 αβ

]
(4.2)

= H + β(h11 − h22)(−βK0 + αK1) + β(h12 + h21)(−αK0 − βK1).
(4.3)

Observe, if F ∈ E , then always γTFγ = F , as E is a commutative set of
matrices and γT γ = I2.

Lemma 4.1. For all i, j = 1, . . . , n we have Hi,j ∈ E.

Proof. Note that H1,1 ∈ E as H1,1 = −HT
1,1. Now let i = 1, j > 1, then by

(4.1)

γTH1,jγ −H1,j = −γTH1,j−1.

Now suppose that we have already shown that H1,j−1 ∈ E , then also
γTH1,j−1 ∈ E , so γTH1,jγ −H1,j ∈ E . From (4.2) it follows that

−β(h11 − h22)− α(h12 + h21) = 0,

α(h11 − h22)− β(h12 + h21) = 0,

or equivalently [
−β −α
α −β

] [
h11 − h22

h12 + h21

]
= 0.

As α2 + β2 = 1 it follows that h11 − h22 = 0 and h12 + h21 = 0, so that
H1,j ∈ E .

By induction we see that H1,j ∈ E for all j = 1, . . . , n, and likewise that
also Hi,1 ∈ E for all i = 1, . . . , n. Using (4.1) for i > 1, j > 1 we have

γTHi,jγ −Hi,j = −(Hi−1,j−1 + γTHi,j−1 +Hi−1,jγ).

Assuming that Hi,j−1, Hi−1,j and Hi−1,j−1 are all in E , we obtain that
γTHi,jγ − Hi,j ∈ E , and as we have seen above this implies that Hi,j ∈ E .
By induction we have proved the lemma. �

The lemma allows us to state the following important result.
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Lemma 4.2. For i > 1 and j > 1 we have

Hi−1,j−1 + γTHi,j−1 +Hi−1,jγ = 0. (4.4)

Proof. Since by the previous lemma Hi,j ∈ E for all i, j, we have that
γTHi,jγ −Hi,j = 0 for all i, j. Then (4.1) becomes (4.4). �

Next, we show that H has a (block) triangular form.

Lemma 4.3. For i+ j ≤ n we have Hi,j = 0.

Proof. Since H1,j ∈ E we have from (4.1) that γTH1,j−1 = 0, and by invert-
ibility of γ it follows that H1,j−1 = 0 for j = 2, . . . , n. Likewise Hi−1,1 = 0
for i = 2, . . . , n.

Now consider i > 1 and j > 1, and suppose that we have already shown
that Hi−1,j−1 = 0. By (4.4) we have 0 = γTHi,j−1 +Hi−1,jγ, which implies

Hi,j−1 = −Hi−1,jγ
2, (4.5)

using again the commutativity of E . Since we know that H1,j = 0 for j =
1, . . . , n− 1, repeated application of (4.5) gives Hi,j = 0 for i+ j ≤ n. �

From here on we have to distinguish between n even and n odd.

4.2.1. The case when n is odd.

Proof of Theorem 2.11, Part (iv), Case 1 with n odd. If n is odd, then
Hn+1

2 ,n+1
2

is skew symmetric, so Hn+1
2 ,n+1

2
= cH0 for some real number c.

Then by (4.5) we have Hn−1
2 ,n+3

2
= −cH0(γ

T )2, and Hn−3
2 ,n+5

2
= cH0(γ

T )4,

and so on.
Up to this point we have derived results that hold for any Jordan basis.

The next step is to construct a special Jordan basis such that H is in the
canonical form. Equivalently, we find a matrix S such that S−1Jn(γ)S =
Jn(γ), while STHS is in the canonical form. This will be done step by step.
Ultimately we shall show that it is possible to take S such that Hi,j = 0 for
i, j > n+1

2 . In addition, the matrix S is such that the block entry Hn+1
2 ,n+3

2

is equal to 1
2cγ

TH0. Note that the latter is in accordance with (4.4).
We follow a similar line of reasoning as in the proof in Section 2.3 in

[8]. For an invertible block upper triangular Toeplitz matrix S with block
entries in E we have that S−1Jn(γ)S = Jn(γ). We shall use such matrices to
construct a canonical form via STHS.

First, let S1 = toep(h1, 0, · · · , 0), with 0 �= h1 ∈ E . Let H(1) = ST
1 HS1.

Then (ST
1 HS1)i,j = hT

1 Hi,jh1 = hT
1 h1Hi,j = dHi,j for some positive real

number d. So we see that we can scale the entry in the (n+1
2 , n+1

2 )-position

to εH0 with ε = ±1. After that we can extract ε from every entry inH(1), and
put it in front of the matrix. This way we may assume that Hn+1

2 ,n+1
2

= H0.

From now on we shall assume that this is the case.
Next, consider the entry at position (n+1

2 , n+3
2 ). By (4.4) we have

H0 + γTH
(1)
n+3
2 ,n+1

2

+H
(1)
n+1
2 ,n+3

2

γ = 0.
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Since H
(1)
n+3
2 ,n+1

2

= −
(
H

(1)
n+1
2 ,n+3

2

)T

, this amounts to

H0 − γT
(
H

(1)
n+1
2 ,n+3

2

)T

+H
(1)
n+1
2 ,n+3

2

γ = 0.

One easily checks that since H
(1)
n+1
2

n+3
2

is in E , that for some real number d

H
(1)
n+1
2 ,n+3

2

= −1

2
γTH0 + dγT . (4.6)

Let S2 = toep(I2, h2, 0, · · · , 0) with 0 �= h2 ∈ E and put H(2) =
ST
2 H

(1)S2. Then

H
(2)
i,j = H

(1)
i,j +H

(1)
i,j−1h2 + hT

2 H
(1)
i−1,j + hT

2 H
(1)
i−1,j−1h2.

For i + j ≤ n + 1 we have H
(2)
i,j = H

(1)
i,j . Indeed, in this case by Lemma 4.3,

H
(1)
i,j−1 = H

(1)
i−1,j = H

(1)
i−1,j−1 = 0. For i = n+1

2 , j = n+3
2 we have from Lemma

4.2 and 4.3 that

H
(2)
n+1
2 ,n+3

2

= H
(1)
n+1
2 ,n+3

2

+H
(1)
n+1
2 ,n+1

2

h2 + hT
2 H

(1)
n−1
2 ,n+3

2

= H
(1)
n+1
2 ,n+3

2

+H0h2 − hT
2 H0(γ

T )2

= H
(1)
n+1
2 ,n+3

2

+ γT (H0(γh2 − hT
2 γ

T )),

where in the last equality we used the commutativity of E and γT γ = I2.
Now observe that H0(γh2 −hT

2 γ
T ) is a scalar multiple of the identity matrix

depending on h2 ∈ E . This implies that by choosing h2 appropriately we can
obtain using (4.6)

H
(2)
n+1
2 ,n+3

2

= −1

2
γTH0.

In the next steps we shall show that we can choose the Jordan basis
so that the entries Hi,j with both i > n+1

2 and j > n+1
2 are all zero. For

this it suffices, by (4.4), to show that S can be chosen so that Hi,i = 0 and
Hi,i+1 = 0 for i > n+1

2 .
As a first step, take S3 = toep(I2, 0, h3, 0 · · · , 0) with h3 ∈ E , and let

H(3) = ST
3 H

(2)S3. Then H
(3)
i,j = H

(2)
i,j for i+ j ≤ n+ 2, as one easily checks,

and

H
(3)
n+3
2 ,n+3

2

= H
(2)
n+3
2 ,n+3

2

+ hT
3 H

(2)
n−1
2 ,n+3

2

+H
(2)
n+3
2 ,n−1

2

+ hT
3 H

(2)
n−1
2 ,n−1

2

h3

= H
(2)
n+3
2 ,n+3

2

− hT
3 H0(γ

T )2 − γ2H0h3.

Now H
(2)
n+3
2 ,n+3

2

and H
(3)
n+3
2 ,n+3

2

are both skew symmetric, hence a real multiple

of H0. Since hT
3 (γ

T )2 + γ2h3 is a multiple of the identity it is clear that we

can choose h3 such that H
(3)
n+3
2 ,n+3

2

= 0.

By (4.4), and the fact that H
(3)
n+5
2 ,n+3

2

= −(H
(3)
n+3
2 ,n+5

2

)T we obtain that

−γT (H
(3)
n+3
2 ,n+5

2

)T +H
(3)
n+3
2 ,n+5

2

γ = 0.
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In turn, this implies that H
(3)
n+3
2 ,n+5

2

is a real multiple of γT .

As a second step, take S4 = toep(I2, 0, 0, h4, 0 · · · , 0) with h4 ∈ E , and
let H(4) = ST

4 H
(3)S4. Then H

(4)
i,j = H

(3)
i,j for i + j ≤ n + 3, as one easily

checks, and

H
(4)
n+3
2 ,n+5

2

= H
(3)
n+3
2 ,n+5

2

+ hT
4 H

(3)
n−3
2 ,n+5

2

+H
(3)
n+3
2 ,n−1

2

h4 + hT
4 H

(3)
n−3
2 ,n−1

2

h4

= H
(3)
n+3
2 ,n+5

2

+ hT
4 H

(3)
n−3
2 ,n+5

2

+H
(3)
n+3
2 ,n−1

2

h4.

Since H
(3)
n−3
2 ,n+5

2

= H0(γ
T )4 and H

(3)
n+3
2 ,n−1

2

= −H0γ
2 (as noted in the begin-

ning of the proof) the latter equation becomes

H
(4)
n+3
2 ,n+5

2

= H
(3)
n+3
2 ,n+5

2

+ hT
4 H0(γ

T )4 −H0γ
2h4

= H
(3)
n+3
2 ,n+5

2

+ γTH0(h
T
4 (γ

T )3 − γ3h4).

Now H0(h
T
4 (γ

T )3 − γ3h4) is a real multiple of I2 and as we already know

that H
(3)
n+3
2 ,n+5

2

is a real multiple of γT , it follows that we can take h4 so that

H
(4)
n+3
2 ,n+5

2

= 0.

We can now continue in this manner by an induction argument (compare
[8], Section 2) and by setting S = Sn+1

2
· · · S2 S1. �

4.2.2. The case when n is even.

Proof of Theorem 2.11, Part (iv), Case 2 with n even. If n is even, then by
(4.5) Hn

2 +1,n2
= −Hn

2 ,n2 +1γ
2. Since also Hn

2 +1,n2
= −HT

n
2 ,n2 +1 we have

HT
n
2 ,n2 +1 = Hn

2 ,n2 +1γ
2. A straightforward computation then gives Hn

2 ,n2 +1 =

cγT for some real number c. Then Hn
2 −1,n2 +2 = −c(γT )3, Hn

2 −2,n2 +3 =

c(γT )5, and so on.

Up to this stage we have derived a ”form” that holds for a general Jordan
basis. The next step is to construct a special Jordan basis such that the
”form” for H is transformed into the canonical form given in Theorem 2.11.
Equivalently, we find step by step a matrix S such that S−1Jn(γ)S = Jn(γ),
while STHS is in the canonical form. We shall show that it is possible to
take S such that Hi,j = 0 for i, j > n

2 .

First we take S1 = toep(h1, 0, · · · , 0), with 0 �= h1 ∈ E . Then H(1) =
ST
1 HS1 has block entries equal to hT

1 h1 times the corresponding entry in H.
Since hT

1 h1 is a positive multiple of the identity this means we can arrange

for H
(1)
n
2 ,n2 +1 = εγT , with ε = ±1. Taking out ε from all the entries, we may

assume that H
(1)
n
2 ,n2 +1 = γT , and this will be assumed from now on.
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Take S2 = toep(I2, h2, 0 · · · , 0) with h2 ∈ E , and put H(2) = ST
2 H

(1)S2.
Then

H
(2)
n
2 +1,n2 +1 = H

(1)
n
2 +1,n2 +1 + hT

2 H
(1)
n
2 ,n2 +1 +H

(1)
n
2 +1,n2

h2 + hT
2 H

(1)
n
2 ,n2

h2

= H
(1)
n
2 +1,n2 +1 + hT

2 γ
T − γh2.

Since hT
2 γ

T−γh2 is a multiple ofH0, and sinceH
(1)
n
2 +1,n2 +1 is a skew-symmetric

2 × 2 matrix, and hence also is a multiple of H0, it is possible to choose h2

so that H
(2)
n
2 +1,n2 +1 = 0.

Next, take S3 = toep(I2, 0, h3, 0, · · · , 0) and put H(3) = ST
3 H

(2)S3.
Then

H
(3)
n
2 +1,n2 +2 = H

(2)
n
2 +1,n2 +2 + hT

3 H
(2)
n
2 −1,n2 +2 +H

(2)
n
2 +1,n2

h3 + hT
3 H

(2)
n
2 ,n2

h3

= H
(2)
n
2 +1,n2 +2 − hT

3 (γ
T )3 − γh3

= H
(2)
n
2 +1,n2 +2 − γT (hT

3 (γ
T )2 + γ2h3).

Now by (4.4) we have

0 = H
(2)
n
2 +1,n2 +2γ + γTH

(2)
n
2 +2,n2 +1,

and since H
(2)
n
2 +2,n2 +1 = −(H

(2)
n
2 +1,n2 +2)

T this amounts to

0 = H
(2)
n
2 +1,n2 +2γ − γT (H

(2)
n
2 +1,n2 +2)

T .

This implies that H
(2)
n
2 +1,n2 +2 = dγT for some real number d. Then it follows

that it is possible to choose h3 such that H
(3)
n
2 +1,n2 +2 = 0.

We can now continue and finish the argument by induction showing
that Hi,j = 0 for i, j > n

2 . This in turn implies by repeated application of
(4.4) that the entries in the right upper corner block of H have the form as
described in the theorem by setting S = S1S2 . . . Sn

2
. �

5. The complex H-symplectic case

To complete the paper, let us consider finally the case where A and H are
complex matrices, and, with H = −H∗ invertible and A∗HA = H. As we
observed in the introduction, the matrix A is then iH-unitary, and iH is
Hermitian. Thus we can apply the result of [8], Theorem 6.1, to arrive at the
following theorem.

Theorem 5.1. Let H be a complex skew-Hermitian invertible matrix, and let
A be complex H-symplectic, so A∗HA = H. Then the pair (A,H) can be
decomposed as

S−1AS =

p⊕
l=1

Al, S∗HS =

p⊕
l=1

Hl,

where the pairs (Al, Hl) have one of the following forms with n depending
on l
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(i) σ(Al) = {λ, λ̄−1} with |λ| �= 1, and

Al = Jn(λ)⊕ Jn(λ̄
−1), Hl =

[
0 H12

−H∗
12 0

]
,

where H12 has one of the following two forms depending on whether n
is odd or even:

Case 1: H12 = −i

[
Zn Pn(λ̄)

Pn(λ̄
−1)T 0

]
when n is odd,

Case 2: H12 = −i

[
0 Qn(λ̄)

−λ̄−2Qn(λ̄
−1)T 0

]
when n is even.

(ii) σ(Al) = {λ} with |λ| = 1, and the pair (Al, Hl) has one of the following
two forms:

Case 1: (Jn(λ),−iε

[
Zn Pn(λ̄)

Pn(λ)
T 0

]
) with ε = ±1 and n is odd,

Case 2: (Jn(λ), ε

[
0 λ̄Qn(λ̄)

−λQn(λ)
T 0

]
) with ε = ±1 and n is even.
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tions, Birkhäuser Verlag, Basel, 2005.

[8] G.J. Groenewald, D.B. Janse van Rensburg, A.C.M. Ran, A canonical form
for H-unitary matrices, Operators and Matrices 10 no. 4 (2016), 739–783.

[9] J. Gutt, Normal forms for symplectic matrices, Port. Math. 71 (2014), 109–
139.

[10] B. Huppert, Isometrien von Vektorräumen 1, Arch. Math. 35 (1980), 164–176.
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