197 research outputs found

    Wide-angle, off-axis, see-through head-mounted display

    Get PDF
    A 60-deg-field-of-view optical see-through head-mounted display (HMD) using off-axis optics has been designed for 3-D medical imaging visualization. Two basic on-axis optical design concepts for see-though HMDs are reviewed first, to motivate the design of an off-axis optical form. An off-axis design is then presented. Because HMDs are typically designed from the pupil of the eye to the miniature display, it is common to assess final performance according to the display characteristics. Such analysis, however, does not provide information that is easily translated into task-based performance metric. Therefore, we present an analysis of the performance of the design from a usability viewpoint. For this analysis, the optical system is ray-traced from the display to the eye. Three key measures of performance-accommodation, astigmatism, and chromatic blur-are presented over the field of regard using customized graphical output

    An approach to the synthesis of biological tissue

    Get PDF
    Mathematical phantoms developed to synthesize realistic complex backgrounds such as those obtained when imaging biological tissue, play a key role in the quantitative assessment of image quality for medical and biomedical imaging. We present a modeling framework for the synthesis of realistic tissue samples. The technique is demonstrated using radiological breast tissue. The model employs a two-component image decomposition consisting of a slowly, spatially varying mean-background and a residual texture image. Each component is synthesized independently. The approach and results presented here constitute an important step towards developing methods for the quantitative assessment of image quality in medical and biomedical imaging, and more generally image science

    Video-based eyetracking methods and algorithms in head-mounted displays

    Get PDF
    Head pose is utilized to approximate a user\u27s line-of-sight for real-time image rendering and interaction in most of the 3D visualization applications using head-mounted displays (HMD). The eye often reaches an object of interest before the completion of most head movements. It is highly desirable to integrate eye-tracking capability into HMDs in various applications. While the added complexity of an eyetracked-HMD (ETHMD) imposes challenges on designing a compact, portable, and robust system, the integration offers opportunities to improve eye tracking accuracy and robustness. In this paper, based on the modeling of an eye imaging and tracking system, we examine the challenges and identify parametric requirements for video-based pupil-glint tracking methods in an ET-HMD design, and predict how these parameters may affect the tracking accuracy, resolution, and robustness. We further present novel methods and associated algorithms that effectively improve eye-tracking accuracy and extend the tracking range

    A unique astigmatic nodal property in misaligned Ritchey-Chretien telescopes with misalignment coma removed

    Get PDF
    We present the aberration field response of Ritchey-Chretien telescopes, with the aperture stop on the primary mirror, to secondary mirror misalignments. More specifically, we derive a general condition for the geometry of the binodal astigmatic aberration field for a telescope that has been aligned to remove field-constant coma. It has been observed that when the coma caused by secondary mirror misalignments is removed the astigmatic field is typically not symmetric around the periphery, but, significantly, it is always effectively zero on-axis. This observation is a manifestation of binodal astigmatism where one of the astigmatic nodes remains near the field center. Here, we show how the condition to remove field-constant coma simultaneously creates a constraint whereby one of the astigmatic nodes must remain effectively on-axis. This result points to why the alignment of a large telescope based on axial imagery is insufficient and demonstrates exactly the geometry of the remaining misalignment aberration field, which dominates the performance of the telescope, providing insights into more complete alignment approaches

    Comparative assessment of freeform polynomials as optical surface descriptions

    Get PDF
    Slow-servo single-point diamond turning as well as advances in computer controlled small lap polishing enables the fabrication of freeform optics, or more specifically, optical surfaces for imaging applications that are not rotationally symmetric. Various forms of polynomials for describing freeform optical surfaces exist in optical design and to support fabrication. A popular method is to add orthogonal polynomials onto a conic section. In this paper, recently introduced gradient-orthogonal polynomials are investigated in a comparative manner with the widely known Zernike polynomials. In order to achieve numerical robustness when higher-order polynomials are required to describe freeform surfaces, recurrence relations are a key enabler. Results in this paper establish the equivalence of both polynomial sets in accurately describing freeform surfaces under stringent conditions. Quantifying the accuracy of these two freeform surface descriptions is a critical step in the future application of these tools in both advanced optical system design and optical fabrication

    Freeform Optical Surfaces: Report from OSA's First Incubator Meeting

    Full text link
    Just as business incubator programs are designed to support the development of fledgling companies, OSA?s new incubator meeting series is structured to encourage the growth of exciting new areas within optics. The first one was devoted to the topic of freeform optics-a field that is actively evolving due to recent technological advances

    Optical Coherence Tomography for Polymer Film Evaluation

    Get PDF
    Development of functional polymer films and film stacks has been under increasing demand to create new generations of novel, compact, light-weight optics. Optical coherence tomography (OCT) is capable of evaluating all the important optical properties of a film or film stack, including topology of surfaces or layer-to-layer interfaces, the refractive index and thickness, and polarization property. By engineering the scanning architecture of an OCT system, high-precision metrology of films of either flat or spherical geometry is achieved. In this chapter, the system design, metrology methodologies, and examples of OCT for film metrology are discussed to provide both the knowledge foundation and the engineering perspectives. The advanced film metrology capabilities offered by OCT play a key role in the manufacturing process maturity of newly developed films. Rapid advancement in the field of OCT is foreseen to drive the application toward in-line film metrology and facilitate the rapid growth of innovative films in the industry

    Optimal local shape description for rotationally non-symmetric optical surface design and analysis

    Get PDF
    A local optical surface representation as a sum of basis functions is proposed and implemented. Specifically, we investigate the use of linear combination of Gaussians. The proposed approach is a local descriptor of shape and we show how such surfaces are optimized to represent rotationally non-symmetric surfaces as well as rotationally symmetric surfaces. As an optical design example, a single surface off-axis mirror with multiple fields is optimized, analyzed, and compared to existing shape descriptors. For the specific case of the single surface off-axis magnifier with a 3 mm pupil, \u3e 15mm eye relief, 24 degree diagonal full field of view, we found the linear combination of Gaussians surface to yield an 18.5% gain in the average MTF across 17 field points compared to a Zernike polynomial up to and including 10th order. The sum of local basis representation is not limited to circular apertures
    • …
    corecore