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Comparative assessment of freeform 
polynomials as optical surface descriptions 
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Abstract: Slow-servo single-point diamond turning as well as advances in 
computer controlled small lap polishing enables the fabrication of freeform 
optics, or more specifically, optical surfaces for imaging applications that 
are not rotationally symmetric. Various forms of polynomials for describing 
freeform optical surfaces exist in optical design and to support fabrication. 
A popular method is to add orthogonal polynomials onto a conic section. In 
this paper, recently introduced gradient-orthogonal polynomials are 
investigated in a comparative manner with the widely known Zernike 
polynomials. In order to achieve numerical robustness when higher-order 
polynomials are required to describe freeform surfaces, recurrence relations 
are a key enabler. Results in this paper establish the equivalence of both 
polynomial sets in accurately describing freeform surfaces under stringent 
conditions. Quantifying the accuracy of these two freeform surface 
descriptions is a critical step in the future application of these tools in both 
advanced optical system design and optical fabrication. 

©2012 Optical Society of America 

OCIS codes: (220.0220) Optical design and fabrication; (220.4830) Systems design; (220.4610) 
Optical fabrication. 
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1. Introduction 

Freeform optical elements are destined to play key roles in the future of optical design. They 
provide additional degrees of freedom to reduce element count and the physical size and 
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weight of an optical system. With the emergence of slow servo diamond turning, freeform 
optical elements are beginning to appear in rotationally nonsymmetric precision optics, e.g. 
head worn displays [1], IR-seekers [2], and illumination systems [3]. Freeform surfaces may 
be described by full aperture polynomials, as for example Zernike polynomials [4], or other 
descriptions such as splines [5], and radial basis functions (RBFs) [6,7]. Zernike polynomials 
and polynomials in that family are restricted to circular apertures, while splines and radial 
basis functions may handle generally shaped apertures. A widely used technique to represent 
optical surfaces with a circular aperture (which is currently most common) is to express the 
deviation from a conic in terms of a summation of orthogonal polynomials, where the 
orthogonal polynomials of choice are currently one of many forms of the Zernike polynomials 
(e.g. Born & Wolf, FRINGE, Noll, etc.). 

Recently a new set of orthogonal polynomials over a circular aperture has been developed 
by Forbes, orthogonalized with respect to the mean square gradient over an enclosing circular 
aperture with the goal of facilitating measures of manufacturability, e.g. optical testing, pad 
polishing etc [8]. These polynomials will be referred to in this paper as gradient-orthogonal 
Q-polynomials following from the Q-polynomial form developed earlier for rotationally 
symmetric surfaces [9]. In this paper, we quantify the effectiveness of this new polynomial for 
describing a rotationally nonsymmetric surface. Specifically, we compare these gradient-
orthogonal Q-polynomials with the current most common form of describing a freeform 
optical surface as a summation of Zernike polynomials added to a conic base surface. 

In the comparison, two sample surfaces form the basis for the presentation of results. 
These surfaces were chosen to represent a stressing example of departure from rotational 
symmetry to establish there are effectively no limits to the conclusions in the context of a 
rotationally nonsymmetric surface that might be developed for an imaging application on any 
scale as this new technology evolves and is leveraged by the optical design community. The 
surface departures are mathematically and conceptually simplified and do not directly 
represent any directly relevant surface at this time. They do however represent a 
representative case for spatial frequency in terms of cycles per aperture and in terms of an 
extreme asymmetry. 

Orthogonal bases as freeform surface descriptors are well-behaved in terms of 
conditioning and provide independence and numerical robustness among basis elements. 
However, these orthogonal bases are defined only over specific aperture geometries 
constraining the aperture shapes of freeform elements. Freeform surfaces do not always 
conform to these aperture shapes. There are methods to overcome these obstacles, for 
example enclosing the aperture inside a circle is mentioned in [8]. 

This paper is organized as follows; Section 2 briefly summarizes two polynomial 
descriptions for characterizing the shape of freeform optical surfaces along with the 
recurrence relations for numerically robust computation. In Section 3, two benchmark test 
cases based on an F/1 parabolic surface with a generic asymmetric feature are investigated 
using two ray based data site sampling strategies. In Section 4, we show the results of 
performing a least-square fit of these two analytic surface test cases using the two sets of 
polynomials with two different ray-sampling grids. Also in this section, we show how the 
RMS fit residual grows with the height of the nonsymmetric feature that is placed on the F/1 
parabolic surface at two different locations, before concluding the paper. 

2. Gradient-orthogonal Q-polynomials and Zernike polynomials 

One of the major parameters used to characterize a freeform optical surface is the rate of 
change of departure along the normals of a best-fit conic section. In earlier work to overcome 
the general ill conditioning of the historical power series polynomial as a descriptor of 
rotationally symmetric aspheric surfaces, Forbes derived two sets of orthogonal slope 
polynomials; Qcon and Qbfs polynomials [9]. In extending his work on aspheric surfaces to 
freeform surfaces, which in general are not rotationally symmetric, he has proposed and 
derived gradient-orthogonal Q-polynomials [8]. With gradient-orthogonal Q-polynomials, a 
freeform surface is represented as follows 

#170987 - $15.00 USD Received 20 Jun 2012; accepted 28 Aug 2012; published 19 Sep 2012
(C) 2012 OSA 24 September 2012 / Vol. 20,  No. 20 / OPTICS EXPRESS  22684



 

( ) ( )

( )

2
2 2 0 0 2

2 2 2 2
0

2

2 2
1 0

1
( , ) 1

1 1 1

1
cos( ) sin( ) ,

1

N

n n
n

M N
m m m m

n n n
m n

c
f u u a Q u

c c

u a m b m Q u
c

ρ
ρ θ

ρ ρ

θ θ
ρ

=

= =

= + −
+ − −

+ +
−

  



 
 (1) 

where c is the curvature of the best fit sphere, u = ρ/ρmax with ρ being a position in the 
aperture and ρmax the radius of the enclosing circular aperture, 0

nQ  represents the rotationally 

symmetric slope-orthogonal bfsQ polynomials, and m
nQ represents the gradient-orthogonal Q-

polynomials [8]. The first two terms of Eq. (1) account for the rotationally symmetric best-fit 
sphere and the summation of symmetric polynomial contributions to the surface departure 
from the best-fit sphere. The third term accounts for the rotationally nonsymmetric 

contributions of the surface departure. 2 2
1 c ρ− is the cosine of the angle between the local 

normals of the best-fit sphere and direction along the axis of the cylinder enclosing the section 
of interest on the surface (see Fig. 2 in [8]). Summations on terms 2 and 3 in Eq. (1) result in 
the aspheric sag deviation applied along the normals of the best-fit sphere. 

With Zernike polynomials, a freeform surface is represented as 
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where m m
nu Z  represents the standard Born and Wolf Zernike polynomials of order m [10]. 

In order to avoid numerical instabilities associated with the explicit expressions in 
computation of both Zernike and Q-polynomials of high orders, we use the recurrence 
relations defined for these polynomials in [8] and [11]. Zernike polynomials satisfy a standard 
three-term recurrence relation given as 

 ( ) ( ) ( ) ( )1 1 ,n n n n n nP a b P c Pρ ρ ρ ρ+ −= + −  (3) 

where nP  represents the orthogonal Jacobi polynomial in a sequence related to Zernike 
polynomials as given in the paragraph before Eq. (4.1) in [11]. For each azimuthal order, this 
recurrence relation should be used to find the next polynomial in the set. For the coefficients 
an,, bn,, and cn readers are referred to Eq. (4.1) of [11]. The rotationally nonsymmetric 
gradient-orthogonal Q-polynomials, much as earlier rotationally symmetric bfsQ polynomials, 
do not satisfy a standard three-term recurrence relation. Instead, they satisfy an 
unconventional three-term recurrence relation. First, for each freeform and bfsQ polynomial, 
an auxiliary polynomial must be computed with a standard three-term recurrence relation 
given as Eq. (3). The coefficients used for the auxiliary polynomials recurrence formula are 
defined in Eq. (A.2) and Eq. (A.3) in Appendix A of [8]. The resulting unconventional 
recurrence relation for the gradient-orthogonal Q-polynomials are given as 
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where, m
nQ  is the Q-polynomial that we are computing, 1

m
nQ −  is the previously computed 

freeform polynomial, and m
nA  is the auxiliary polynomial that is precomputed. The 

coefficients 
1
,

m m

n n
g f

−
 are computed recursively according to the steps described from Eq. 

(A.13) to Eq. (A.18) in [8]. The effect of using recurrence relations with Zernike polynomials 
are given in Fig. 1 of [11] and Fig. 2 of [12]. 
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3. Ray grids for data site sampling and test cases 

We showed previously that, in the context of fitting a set of polynomials to a continuous 
analytical surface, edge clustered fitting grids demonstrate the best efficacy in terms of 
polynomial fitting optical surfaces in a least-squares sense [12]. Thus, we will make use of an 
edge clustered fitting grid in our performance evaluations. Edge clustered sampling is created 
by first generating random Halton points and then applying a sine function on the radial 
coordinate to move these points towards the boundary of the aperture. 

To continue to illustrate the effectiveness of edge clustered ray grids and to enable 
comparison with earlier evaluations, we have also provided results using hexagonal subgrids 
centered on a uniform rectangular grid. We have sampled the optical surface with hexagonal 
subgrids rather than rectangular subgrids as the circular aperture is more uniformly covered 
with this strategy. In Fig. 1, we have illustrated two examples of the sample grids that will be 
used in the polynomial comparisons. Throughout the paper, when comparisons are made 
between two sets of polynomials with two different sampling grids, we make sure that we use 
about the same number of samples on each of the grids. 

 

Fig. 1. The two types of ray-grids used for creating data sites for polynomial fitting with about 
900 rays in this figure: (a) Hexagonal uniform (b) Edge clustered. 

In order to investigate the effectiveness of the gradient-orthogonal Q-polynomial versus 
the Zernike polynomial using the ray grids given in Fig. 1, we have formed a benchmark test 
suite consisting of analytical functions. The first test case is an F/1 parabola with a Gaussian 
bump away from the edge of the aperture. The second test case is again the same F/1 parabola 
with the same Gaussian bump placed now at the edge of the parabola. The aperture diameter 
for the F/1 parabola is chosen to be 80 mm. The Gaussian bump is 12.5 µm in height and has 
a 2.357 mm standard deviation. The analytical definitions for the test cases are given in Eq. 
(5) and Eq. (6) as 
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where 
1

f  represents the F/1 parabola with the Gaussian bump away from the edge, and 
2

f  
represents the F/1 parabola with the Gaussian bump at the edge. To illustrate these two test 
cases, we plotted the sag departure from a best-fit sphere in Fig. 2. Similar to the Eq. (4.2) in 
[13], the curvature of the best-fit sphere (bfs) is computed as 
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where the angle brackets denote the average of the sag at the edge of the aperture over θ . 
Because for freeform surfaces the sag also depends uponθ , correctly computing the curvature 
of the best-fit sphere has a profound effect on the computations associated with fitting of 
surfaces with gradient-orthogonal Q-polynomials, especially when the surface to be fitted has 
asymmetric components at the edge of the aperture. 

Figure 2(a) illustrates the sag departure of the first test case that is an 80 mm diameter 
aperture F/1 parabola with the Gaussian bump away from the edge of the aperture. Figure 2(b) 
shows the sag departure of the second test case that is an 80 mm diameter aperture F/1 
parabola with the Gaussian bump at the edge of the aperture. 

 

Fig. 2. Sag departure from the best fit sphere (bfs): (a) f1-bfs, F/1 parabola with the Gaussian 
bump away from the edge (b) f2-bfs, F/1 parabola with the Gaussian bump near the edge of the 
aperture. 

4. Numerical simulations 

We investigated the fidelity of creating a freeform optical surface description based on the 
gradient-orthogonal Q-polynomials and the Zernike polynomials based on data sites placed on 
the hexagonal uniform and the edge clustered sampling grid. We have carried out the least 
squares fit with increasing numbers of basis elements (coefficients). The relation between the 
number of samples and the number of basis elements was established empirically as 9*k2, 
where k is the highest order of the polynomial in the polynomial fit. Truncation of the sums is 
carried out based upon the condition k<T, for some given integer T, and k equals m + 2n for 
the gradient-orthogonal Q-polynomials. 

In Fig. 3, we have illustrated the effect of sampling on the fidelity of the surface 
representation with both sets of polynomials for the f1 test case. We found that both 
polynomials performed almost identically for this test case. We have made use of 
approximately 54845 samples and 3320 polynomials with either set of polynomials. We have 
seen that for the f1 test case, which is the 80 mm diameter F/1 parabola with a Gaussian bump 
placed away from the edge of the aperture, using hexagonal uniform ray grids both 
polynomials have peak-to-valley (PV) fit residuals ~10 nm (see Fig. 3(a)). Edge clustered ray 
grids result in a remarkable improvement on the overall fit residual profile, as shown in Fig. 
3(b). Both polynomials produced PV fit residuals on the order of sub-nanometers with edge 
clustered ray grids. 
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Fig. 3. Sag fit residual profiles for f1 ; the F/1 parabola with a Gaussian bump away from the 
edge of the aperture with T = 80; (a) fit residual with hexagonal uniform sampling, (b) fit 
residual with edge clustered sampling. The gradient-orthogonal Q-polynomial and the Zernike 
polynomial representations give indistinguishable results, so only one is shown. 

In Fig. 4, we have displayed the effect on the fit residual for test case f2, when the 
Gaussian bump is placed at the edge of the aperture. Also in this case, the fit residuals for 
gradient-orthogonal Q-polynomials and Zernike polynomials are quite indistinguishable. In 
Fig. 4(a), the hexagonal uniform ray grid is used to create data sites for the least squares 
fitting, and we see that the PV fit residuals are ~4 nm with the gradient-orthogonal Q-
polynomials and Zernike polynomials. The outcome is more compelling with the edge 
clustered ray grid, which increases the density of data sites towards the edge of the aperture. 
As seen in earlier work, this ray grid strategy significantly reduces the PV fit residuals, as 
seen in Fig. 4(b). We observe that the Zernike polynomials and the gradient-orthogonal Q-
polynomials produced a sub-nanometer fit residual with the edge clustered sampling as shown 
in Fig. 4(b). 

In Fig. 5, we have compared RMS fit residuals that result in fitting test cases f1 and f2 with 
hexagonal uniform and edge clustered ray grids with the two polynomial sets. We have 
gradually increased the degree of the Zernike polynomials and the gradient-orthogonal Q-
polynomials as the truncation parameter in the sum is moved from T = 5 to T = 80 in steps of 
10. As the number of basis elements goes up from 19 to 3319, the number of data samples in 
the fit increases from 226 to 54845. As found previously, we have observed that the edge 
clustered sampling consistently produces better fits when compared to hexagonal uniform 
sampling as demonstrated by the solid black lines in Fig. 5(a) and Fig. 5(b). We have also 
shown that gradient-orthogonal Q-polynomials and Zernike polynomials produced effectively 
exact representations with edge clustered sampling for both the less stressing f1 case, with the 
bump away from the edge and the more stressing f2 case, with the bump at the edge as marked 
with solid black lines in Fig. 5(a) and Fig. 5(b). 

 

Fig. 4. Sag fit residual profiles for f2 ; the F/1 parabola with Gaussian bump at the aperture 
edge with T = 80; (a) fit residual with hexagonal uniform sampling, (b) fit residual with edge 
clustered sampling. Zernike and gradient-orthogonal Q-polynomials perform very similarly, so 
only one is shown. 
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Fig. 5. Comparing Zernike polynomials and gradient-orthogonal Q-polynomials as freeform 
surface representations. The fidelity is investigated with both edge clustered and hexagonal 
uniform data site samples in the case of fitting analytical functions with these surface 
descriptions; the evolution of the RMS fit residual vs. the number of coefficients for the test 
case (a) f1, F1 parabola with the bump away from the edge, (b) f2, F1 parabola with the bump at 
the edge. 

In the case of fitting an analytical surface description using the intrinsically less effective 
hexagonal uniform data site sampling, the gradient-orthogonal Q-polynomials residual fits are 
slightly better than for the Zernike polynomials for both the f1 and the f2 test cases, as shown 
by the dash-dot blue curves in Fig. 5(a) and Fig. 5(b). Zernike polynomials and gradient-
orthogonal Q-polynomials combined with edge clustered sampling consistently produced 
significantly better fits as the maximum degree of the polynomial is increased from T = 5 to T 
= 80 (see the black solid curves in Fig. 5(a) and Fig. 5(b)). For both test cases f1 and f2, fits 
with Zernike polynomials and gradient-orthogonal Q-polynomials reached the required 
subnanometer levels (see point B in Fig. 5(a) and Fig. 5(b)). The gradient-orthogonal Q-
polynomials performed as well as Zernike polynomials in achieving the accuracy levels in 
describing the optical surfaces, as given here as test cases f1 and f2. 

We then expanded the test case study to quantify the fit residuals for Zernike polynomials 
and gradient-orthogonal Q-polynomials by systematically doubling the height of the Gaussian 
bump. We have quantified the minimal RMS fit residual in the fits for when the truncation 
point in the expansion is determined by T = 80, with hexagonal uniform and edge clustered 
sampling with both polynomial sets for the height of the bump set at 12.5µm, 25µm, 50µm, 
and 100µm as shown in Fig. 6. Dash-dot lines show the RMS fit residuals in the least-squares 
approximations with gradient-orthogonal Q-polynomials. Solid lines are used when the 
Zernike polynomials are used. Results show that there is a linear relationship between the 
minimum RMS fit residual and the height of the bump. Specifically, in Fig. 6(a) that 
addressed a bump away from the edge of the aperture (i.e. case f1), Point A shows the RMS fit 
residual when the height of the bump is 12.5 µm using Zernike polynomials with edge 
clustered sampling. Point B shows the RMS fit residual when the height of the bump is 100 
µm. The RMS fit residual increased from 4.5x10−12 m to 3.6x10−11 m that is 8 times. An 
equivalent relation is also found for the Points C and D. Moreover, we observe that with edge 
clustered sampling both polynomials produced two orders of magnitude better RMS fit 
residuals when compared with the performance of either polynomial with hexagonal uniform 
sampling (see blue and black curves in Fig. 6). The Point A records a RMS fit residual 
4.5x10−12 m, and Point C shows 1.8x10−10 m residual fit departure. 

The blue curves show RMS fit residuals in the approximants when hexagonal uniform 
sampling is used for both polynomial sets. In Fig. 6(a) the blue dash-dot curve is slightly 
lower than the solid blue line indicating the gradient-orthogonal Q-polynomials performed 
slightly better, while not significantly, with hexagonal uniform sampling for the test case f1. 
Similarly for Fig. 6(b), the Zernike polynomials performed slightly better, while not 
significantly, with hexagonal uniform sampling for the test case f2 (see blue lines in Fig. 6(b)). 
Similarly the black curves demonstrate the improved performance with edge clustered 
sampling. We can see for both Fig. 6(a) and Fig. 6(b) that the black dash-dot line and the 
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black solid line coincide, which suggest that with edge clustered sampling Zernike polynomial 
and gradient-orthogonal Q-polynomials provide fits with identical fidelity for the test cases f1 
and f2. 

 

Fig. 6. Zernike (solid lines) and gradient-orthogonal Q-polynomials (dash lines) surface 
approximation performance over a range of heights of the rotationally nonsymmetric bump 
with hexagonal uniform and edge clustered sampling for the test cases (a) f1, (b) f2. 

5. Conclusion and future work 

In this work we have seen that in order to achieve an acceptable polynomial fit to an 
asymmetric localized feature any single additive polynomial requires many terms, on the 
order of thousands, if subnanometer accuracy is required, as is often the case in precision 
optics. We have also observed that Zernike and gradient-orthogonal Q-polynomials placed 
additively on a base conic section are able to equally represent the nonsymmetric features of 
the surface no matter where these features might be positioned over a significant range of 
feature height and slope. One crucial step working with Q-polynomials is to accurately 
calculate the curvature of the best fit sphere, which later on effects the sag computation 
significantly, see Eq. (1) and Eq. (7). Also, in both cases, the use of recurrence formula is a 
key enabler to nanometer accuracy when representing high frequency features in an aperture. 

In all the analyses carried out, we have used least-squares methods in arriving at the 
coefficients of fit. In a real optical design environment, these approximations are the results of 
optimization procedures involving not only the polynomials, but also their first and second 
derivatives. Hence a next level of comparison takes into account the first and second 
derivatives of the polynomials under evaluation. Also, the offset Gaussian bump may be 
considered as a possible extreme feature to fall beyond a departure that would be seen in a 
freeform optical design for an imaging application. In addition, while representing a surface 
with thousands of coefficients such as given in this paper currently exceeds the capabilities of 
commercial optical design optimization, it does not exceed their analysis. An alternative to 
thousands of terms for representing a generic asymmetric feature, while perhaps not as narrow 
as in this paper, is to consider using a number (tens) of multicentric additive bases. An initial 
evaluation of this approach is found in [7]. 

The capability to fabricate rotationally nonsymmetric surfaces for imaging applications is 
a new capability for the industry and as a result there are currently few examples. However, 
the generation of aspheric surfaces with small tool grinding and polishing provides an early 
set of surface examples that often suffer from significant mid spatial frequencies. Also bump 
generation with small tools polishing may occur during the fabrication process. For this study, 
the stressing asymmetric surface was used to establish that are there no limits to the 
application of the results in the context of current or future rotationally nonsymmetric surfaces 
in image forming optical systems. The offset Gaussian bump may be considered as a possible 
feature during fabrication if considered as an isolated bump. However, there is some 
anticipation that the Gaussian bump used in this simulation could represent a limiting spatial 
frequency in the aperture, but, as part of an imaging surface departure, it would be expected 
that there may be tens of, or perhaps even hundreds of features with this limiting geometry on 
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a future surface. Future work will investigate the application of the tools developed under this 
work to fitting mid spatial frequencies on measured surface data with the goal to set 
tolerances for fabrication. The application of freeform surfaces in advanced optical system 
design also requires establishing quantitatively the equivalence between various freeform 
surface descriptions. 
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