12 research outputs found

    Die biochemische Analyse des Plasmodium falciparum Zytoadhärenz Moleküls PfEmp1 zeigt einen potentiell neuen Mechanismus für die Insertion von Oberflächenproteinen in Membranen

    Get PDF
    Das 1995 entdeckte Plasmodium falciparum Zytoadhärenz-Molekül PfEmp1 wird auf der Oberfläche von infizierten Erythrozyten exponiert und ist ein wichtiger Pathogenitätsfaktor in Malaria. PfEmp1-Proteine bilden eine hoch-variable Antigenfamilie, die dem intraerythrozytären Parasiten die Immunevasion ermöglicht. In der allgemeinen Vorstellung wird PfEmp1, das eine zum C-Terminus proximale hydrophobe Region besitzt, als Typ 1-Membranprotein synthetisiert und als solches in die Erythrozytenmembran sezerniert. Dieses Modell setzt einen Protein-Sekretionsapparat, wie er in allen kernhaltigen eukaryoten Zellen vorhanden ist, in der Wirtszelle voraus. Erythrozyten sind jedoch weder zu der Synthese noch zu dem Transport von Proteinen fähig. Dieses Problem wurde in dem vorliegenden Projekt zum Anlass genommen, das Modell einer genauen biochemischen Überprüfung zu unterziehen. Das Protein konnte nach Behandlung von infizierten Erythrozyten mit dem Sekretions-Inhibitor BFA im Parasiten akkumuliert werden und ließ sich dort mit alkalischem Karbonatpuffer im Gegensatz zu einem integralen Marker-Membranprotein extrahieren. Es wurde ein Verfahren zur Untersuchung von Transportvesikeln entwickelt, jedoch konnte die Assoziation von PfEmp1 mit solchen nicht gezeigt werden. Stattdessen war das Protein, einmal in die Wirtszelle sezerniert, unter Bedingungen, unter denen integrale Membranproteine unlöslich sind, löslich. PfEmp1-Moleküle, die in die Erythrozytenmembran inseriert waren, konnten mit Harnstoff extrahiert werden. Integrale Marker-Membranproteine waren resistent gegen die Harnstoffbehandlung, und in Saccharose-Dichtegradienten konnte Oberflächen-PfEmp1 nach Harnstoffbehandlung von Membranproteinen des Erythrozyten getrennt werden. Die Ergebnisse dieser Arbeit zeichnen ein neues Bild von der Membranassoziation von PfEmp1 und deuten auf einen gänzlich verschiedenen Mechanismus der Sekretion und der Membraninsertion hin. Das Protein wird vermutlich als peripheres Membranprotein oder als Teil eines Komplexes sezerniert und über einen unbekannten Mechanismus, der die spezifische Interaktion von PfEmp1 mit Protein-Bindungspartnern impliziert, in die Erythrozytenmembran inseriert. Dort steht PfEmp1 im Verband mit anderen Proteinen, ohne selber direkt mit Lipiden wechselzuwirken

    Die biochemische Analyse des Plasmodium falciparum Zytoadhärenz Moleküls PfEmp1 zeigt einen potentiell neuen Mechanismus für die Insertion von Oberflächenproteinen in Membranen

    Get PDF
    Das 1995 entdeckte Plasmodium falciparum Zytoadhärenz-Molekül PfEmp1 wird auf der Oberfläche von infizierten Erythrozyten exponiert und ist ein wichtiger Pathogenitätsfaktor in Malaria. PfEmp1-Proteine bilden eine hoch-variable Antigenfamilie, die dem intraerythrozytären Parasiten die Immunevasion ermöglicht. In der allgemeinen Vorstellung wird PfEmp1, das eine zum C-Terminus proximale hydrophobe Region besitzt, als Typ 1-Membranprotein synthetisiert und als solches in die Erythrozytenmembran sezerniert. Dieses Modell setzt einen Protein-Sekretionsapparat, wie er in allen kernhaltigen eukaryoten Zellen vorhanden ist, in der Wirtszelle voraus. Erythrozyten sind jedoch weder zu der Synthese noch zu dem Transport von Proteinen fähig. Dieses Problem wurde in dem vorliegenden Projekt zum Anlass genommen, das Modell einer genauen biochemischen Überprüfung zu unterziehen. Das Protein konnte nach Behandlung von infizierten Erythrozyten mit dem Sekretions-Inhibitor BFA im Parasiten akkumuliert werden und ließ sich dort mit alkalischem Karbonatpuffer im Gegensatz zu einem integralen Marker-Membranprotein extrahieren. Es wurde ein Verfahren zur Untersuchung von Transportvesikeln entwickelt, jedoch konnte die Assoziation von PfEmp1 mit solchen nicht gezeigt werden. Stattdessen war das Protein, einmal in die Wirtszelle sezerniert, unter Bedingungen, unter denen integrale Membranproteine unlöslich sind, löslich. PfEmp1-Moleküle, die in die Erythrozytenmembran inseriert waren, konnten mit Harnstoff extrahiert werden. Integrale Marker-Membranproteine waren resistent gegen die Harnstoffbehandlung, und in Saccharose-Dichtegradienten konnte Oberflächen-PfEmp1 nach Harnstoffbehandlung von Membranproteinen des Erythrozyten getrennt werden. Die Ergebnisse dieser Arbeit zeichnen ein neues Bild von der Membranassoziation von PfEmp1 und deuten auf einen gänzlich verschiedenen Mechanismus der Sekretion und der Membraninsertion hin. Das Protein wird vermutlich als peripheres Membranprotein oder als Teil eines Komplexes sezerniert und über einen unbekannten Mechanismus, der die spezifische Interaktion von PfEmp1 mit Protein-Bindungspartnern impliziert, in die Erythrozytenmembran inseriert. Dort steht PfEmp1 im Verband mit anderen Proteinen, ohne selber direkt mit Lipiden wechselzuwirken

    Functional Characterization of the Plasmodium falciparum Chloroquine-Resistance Transporter (PfCRT) in Transformed Dictyostelium discoideum Vesicles

    Get PDF
    Chloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization.We describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K(+) to reverse membrane potential hyperpolarization caused by valinomycin treatment.Isolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an electrochemical potential-driven transporter in the drug/metabolite superfamily that (appropriately mutated) acts as a saturable simple carrier for the facilitated diffusion of protonated CQ

    Influence of ionophores on [<sup>3</sup>H]-CQ accumulation by whole cells and isolated vesicles from untransformed and <i>Pf</i>CRT-transformed <i>Dictyostelium discoideum</i>.

    No full text
    <p>(<b>A</b>) Labeled drug uptake by whole cells (in PB) or vesicles (in VSB) in the presence of 100 nM [<sup>3</sup>H]-CQ and 2 μM concentrations of monensin (Mon), nigericin (Nig), or valinomycin (Val). Cells were incubated in the buffers for 10 min before determination of [<sup>3</sup>H]-CQ uptake. Note the similar accumulations of [<sup>3</sup>H]-CQ by untransformed and SEA-CRT-transformed vesicles in the presence of Val. Error bars indicate standard deviations of measurements from three independent measurements. (<b>B</b>) Representative DiOC<sub>5</sub>(3) fluorescence traces indicating membrane potential changes in untransformed (black), SEA-CRT-transformed (grey), and WT-CRT-transformed (light grey) F/T vesicles in MCB. Val (2 μM) was added at 200 s, and K<sup>+</sup> (25 mM) was added at 300 s. P1, P2, P3, and P4 indicate points where fluorescence intensity measurements were taken from the tracings to determine the magnitude of hyperpolarization by valinomycin (P1, fluorescence level before valinomycin is added; P2, trough fluorescence) and the magnitude of depolarization after addition of 25 mM K<sup>+</sup> (P3, peak fluorescence after K+ addition; P4, fluorescence level before K<sup>+</sup> is added). FC, fluorescence counts. (<b>C</b>) Average valinomycin response (P1–P2) and recoveries of DiOC<sub>5</sub> (3) fluorescence (P3–P4) before and after addition of 25 mM K<sup>+</sup> in eight independent experiments. Asterisks (*) indicate significant difference from the average result with untransformed vesicles (P<0.005; n = 8).</p

    Measures of [<sup>3</sup>H]-CQ uptake, ATP levels, and vesicle pH in untransformed, SEA-CRT-, and WT-CRT-transformed <i>Dictyostelium discoideum</i> whole cells.

    No full text
    <p>(<b>A</b>) Labeled drug uptake by <i>D. discoideum</i> cells in PB containing 100 nM [<sup>3</sup>H]-CQ and various concentrations of unlabeled CQ and ammonia. Cells were incubated in [<sup>3</sup>H]-CQ for 10 min before determination of [<sup>3</sup>H]-CQ uptake. (<b>B</b>) Effects of VP, the protonophore CCCP, and the V-Type ATPase inhibitor CMA on [<sup>3</sup>H]-CQ uptake. (<b>C</b>) Effects of VP, CCCP, and CMA on cytoplasmic ATP levels. (<b>D–F</b>) Relative effects of VP, CCCP, and CMA on acidic compartment pH traced by 0.5 µM LysoSensor<sup>TM</sup> Blue DND-167 probe (FC, fluorescence counts; y-axis scales are the same for figures D–F). Slight decreases of fluorescence from cells in PB after 600 s may be due to lysosomal alkalinization from the LysoSensor<sup>TM</sup> Blue DND-167 probe. Concentrations of 80 μM VP, 2 μM CCCP, and 100 nM CMA were employed in the experiments. Error bars indicate standard deviations from three independent measurements.</p

    Identification of vesicles enriched for <i>Pf</i>CRT and levels of radiolabeled drug accumulation.

    No full text
    <p>(<b>A</b>) Semi-quantitative immunoblot (WB) analysis of membrane fractions precipitated at 1000×<i>g</i> (F2), 2000×<i>g</i> (F3), 4000×<i>g</i> (F4), 20,000×<i>g</i> (F5), and 100,000×<i>g</i> (F6). Top, middle, and bottom panels show results from the isolated vesicles of untransformed, SEA-CRT-, and WT-CRT-transformed cells. Fractions F1 and F7 represent samples of whole cells and supernatant, respectively. (<b>B</b>) Electron micrograph of a sample from F5. (<b>C</b>) Labeled drug uptake in F5 vesicles incubated for 10 min with 100 nM [<sup>3</sup>H]-CQ, [<sup>3</sup>H]-QN, or [<sup>3</sup>H]-PPQ in VSB with or without 1 mM ATP. Histograms compare results with fresh (solid bars) and stored frozen F/T vesicles (hashed bars) prepared from untransformed, SEA-CRT-, and WT-CRT-transformed <i>D. discoideum</i>. Error bars indicate standard deviations of measurements from three independent measurements on samples from the F/T vesicle preparation.</p

    Effects of buffer conditions on [<sup>3</sup>H]-CQ accumulation and pH in F/T vesicles from untransformed, SEA-CRT-, and WT-CRT-transformed <i>Dictyostelium discoideum.</i>

    No full text
    <p>(<b>A</b>) [<sup>3</sup>H]-CQ uptake by F/T vesicles in VSB vs. vesicles exposed to 80 μM VP in VSB, 2 μM CCCP in VSB, OS, or MCB. Levels in vesicles isolated from whole cells pre-incubated in 100 nM [<sup>3</sup>H]-CQ and 80 μM VP are shown at the right (VP-C). (<b>B</b>) Radiolabel uptake by F/T vesicles exposed to 100 nM [<sup>3</sup>H]-CQ in VSB containing various concentrations of NH<sub>3</sub> (0.0, 0.1 or 1 mM; left panel) or various concentrations of additional unlabeled CQ (1, 10, 100 or 1000 µM; right panel). (<b>C</b>) pH determinations of isolated FITC-dextran loaded vesicles incubated for 10 min in the presence of various concentrations of CQ or 1 mM ammonia. Error bars indicate standard deviations of measurements from three independent measurements on samples from the F/T vesicle preparation.</p
    corecore