9 research outputs found

    Dissolution testing of a metallic waste form in chloride brine

    Get PDF
    This paper is intended for publication in the peer-reviewed proceedings from the Scientific Basis for Nuclear Waste Management (at the Fall 2006 meeting of the Materials Research Society). The same material was presented in a 15-minute talk. Argonne National Laboratory has developed an electrometallurgical process for conditioning spent sodium-bonded metallic reactor fuel from the Experimental Breeder Reactor II (EBR-II). One waste stream from this process consists of a metal waste form (MWF) whose baseline composition is stainless steel alloyed with 15 wt% Zr (SS-15Zr) and whose microstructure is a eutectic intergrowth of iron solid solutions and Fe-Zr-Cr-Ni intermetallics. This paper reports scanning electron microscope (SEM) observations of corrosion products formed during static immersion tests in which coupons of surrogate MWF containing 10 wt% U (SS-15Zr-10U) were immersed in solutions with nominal pH values of 3 and 4 and 1000 ppm added chloride for 70 days at 50 °C. Although the majority of the surface areas of the coupons appear unchanged, linear areas with localized corrosion products apparently consisting of porous materials overlying corrosion-product-filled channels formed on both coupons, cross-cutting phase boundaries in the original eutectic microstructures. Many of the linear areas intersected the sample edge at notches present before the tests or followed linear flaws visible in pre-test images. Compositions of corrosion products differed significantly from the bulk composition, and the maximum observed concentration of U in corrosion products (~25 at%) slightly exceeded the highest reported values in actinide-bearing phases in uncorroded surrogate MWF samples with comparable concentrations of U (~17-19 at%)

    Transmission Electron Microscopy of Synthetic 2- and 6-Line Ferrihydrite

    No full text
    corecore