4 research outputs found

    Starting a new anti-seizure medication in drug-resistant epilepsy: Add-on or substitute?

    Get PDF
    Objectives: Randomized studies in drug-resistant epilepsy (DRE) typically involve addition of a new anti-seizure medication (ASM). However, in clinical practice, if the patient is already taking multiple ASMs, then substitution of one of the current ASMs commonly occurs, despite little evidence supporting this approach. Methods: Longitudinal prospective study of seizure outcome after commencing a previously untried ASM in patients with DRE. Multivariable time-to-event and logistic regression models were used to evaluate outcomes by whether the new ASM was introduced by addition or substitution. Results: A total of 816 ASM changes in 436 adult patients with DRE between 2010 and 2018 were analyzed. The new ASM was added on 407 (50.1%) occasions and substituted on 409 (49.9%). Mean patient follow-up was 3.2 years. Substitution was more likely if the new ASM was enzyme-inducing or in patients with a greater number of concurrent ASMs. ASM add-on was more likely if a γ-aminobutyric acid (GABA) agonist was introduced or if the patient had previously trialed a higher number of ASMs. The rate of discontinuation due to lack of tolerability was similar between the add-on and substitution groups. No difference between the add-on and substitution ASM introduction strategies was observed for the primary outcome of ≥50% seizure reduction at 12 months. Significance: Adding or substituting a new ASM in DRE has the same influence on seizure outcomes. The findings confirm that ASM alterations in DRE can be individualized according to concurrent ASM therapy and patient characteristics

    Individualised prediction of drug resistance and seizure recurrence after medication withdrawal in people with juvenile myoclonic epilepsy: A systematic review and individual participant data meta-analysis

    Get PDF
    Summary Background A third of people with juvenile myoclonic epilepsy (JME) are drug-resistant. Three-quarters have a seizure relapse when attempting to withdraw anti-seizure medication (ASM) after achieving seizure-freedom. It is currently impossible to predict who is likely to become drug-resistant and safely withdraw treatment. We aimed to identify predictors of drug resistance and seizure recurrence to allow for individualised prediction of treatment outcomes in people with JME. Methods We performed an individual participant data (IPD) meta-analysis based on a systematic search in EMBASE and PubMed – last updated on March 11, 2021 – including prospective and retrospective observational studies reporting on treatment outcomes of people diagnosed with JME and available seizure outcome data after a minimum one-year follow-up. We invited authors to share standardised IPD to identify predictors of drug resistance using multivariable logistic regression. We excluded pseudo-resistant individuals. A subset who attempted to withdraw ASM was included in a multivariable proportional hazards analysis on seizure recurrence after ASM withdrawal. The study was registered at the Open Science Framework (OSF; https://osf.io/b9zjc/). Findings  368) was predicted by an earlier age at the start of withdrawal, shorter seizure-free interval and more currently used ASMs, resulting in an average internal-external cross-validation concordance-statistic of 0·70 (95%CI 0·68–0·73). Interpretation We were able to predict and validate clinically relevant personalised treatment outcomes for people with JME. Individualised predictions are accessible as nomograms and web-based tools. Funding MING fonds

    Automated inter-ctal epileptiform discharge detection from routine EEG

    Get PDF
    Epilepsy is the most common neurological disorder. The diagnosis commonly requires manual visual electroencephalogram (EEG) analysis which is time-consuming. Deep learning has shown promising performance in detecting interictal epileptiform discharges (IED) and may improve the quality of epilepsy monitoring. However, most of the datasets in the literature are small (n≤100) and collected from single clinical centre, limiting the generalization across different devices and settings. To better automate IED detection, we cross-evaluated a Resnet architecture on 2 sets of routine EEG recordings from patients with idiopathic generalized epilepsy collected at the Alfred Health Hospital and Royal Melbourne Hospital (RMH). We split these EEG recordings into 2s windows with or without IED and evaluated different model variants in terms of how well they classified these windows. The results from our experiment showed that the architecture generalized well across different datasets with an AUC score of 0.894 (95% CI, 0.881–0.907) when trained on Alfred’s dataset and tested on RMH’s dataset, and 0.857 (95% CI, 0.847–0.867) vice versa. In addition, we compared our best model variant with Persyst and observed that the model was comparable

    Individualised prediction of drug resistance and seizure recurrence after medication withdrawal in people with juvenile myoclonic epilepsy: A systematic review and individual participant data meta-analysis

    No full text
    Background A third of people with juvenile myoclonic epilepsy (JME) are drug-resistant. Three-quarters have a seizure relapse when attempting to withdraw anti-seizure medication (ASM) after achieving seizure-freedom. It is currently impossible to predict who is likely to become drug-resistant and safely withdraw treatment. We aimed to identify predictors of drug resistance and seizure recurrence to allow for individualised prediction of treatment outcomes in people with JME. Methods We performed an individual participant data (IPD) meta-analysis based on a systematic search in EMBASE and PubMed – last updated on March 11, 2021 – including prospective and retrospective observational studies reporting on treatment outcomes of people diagnosed with JME and available seizure outcome data after a minimum one-year follow-up. We invited authors to share standardised IPD to identify predictors of drug resistance using multivariable logistic regression. We excluded pseudo-resistant individuals. A subset who attempted to withdraw ASM was included in a multivariable proportional hazards analysis on seizure recurrence after ASM withdrawal. The study was registered at the Open Science Framework (OSF; https://osf.io/b9zjc/). Findings Our search yielded 1641 articles; 53 were eligible, of which the authors of 24 studies agreed to collaborate by sharing IPD. Using data from 2518 people with JME, we found nine independent predictors of drug resistance: three seizure types, psychiatric comorbidities, catamenial epilepsy, epileptiform focality, ethnicity, history of CAE, family history of epilepsy, status epilepticus, and febrile seizures. Internal-external cross-validation of our multivariable model showed an area under the receiver operating characteristic curve of 0·70 (95%CI 0·68–0·72). Recurrence of seizures after ASM withdrawal (n = 368) was predicted by an earlier age at the start of withdrawal, shorter seizure-free interval and more currently used ASMs, resulting in an average internal-external cross-validation concordance-statistic of 0·70 (95%CI 0·68–0·73). Interpretation We were able to predict and validate clinically relevant personalised treatment outcomes for people with JME. Individualised predictions are accessible as nomograms and web-based tools
    corecore