50 research outputs found

    Medium-resolution echelle spectroscopy of pulsating variables and exoplanet host stars with sub-meter telescopes

    Get PDF
    Here we present two of our interesting results obtained over the last 18 months from spectroscopic monitoring of binary pulsating stars and exoplanet host stars. Our investigations are very promising by demonstrating that modern fiber-fed spectrographs open a whole new chapter in the life of small national and university observatories.Comment: 3 pages, 3 figures. To be published in the proceedings of the workshop on "Observing techniques, instrumentation and science for metre-class telescopes", Sep. 2013, Tatranska Lomnica, Slovaki

    Discovery of the spectroscopic binary nature of the classical Cepheids FN Aql and V1344 Aql

    Get PDF
    We present the analysis of photometric and spectroscopic data of two classical Cepheids, FN Aquilae and V1344 Aquilae. Based on the joint treatment of the new and earlier radial velocity data, both Galactic Cepheids have been found to be a member in a spectroscopic binary system. To match the phases of the earlier radial velocity data correctly with the new ones, we also determined the temporal behaviour of the pulsation period of these Cepheids based on all available photometric data. The O-C graph covering about half century shows slight changes in the pulsation period due to stellar evolution for both Cepheids.Comment: 7 pages, 6 figures, 7 tables, accepted for publishing in the MNRA

    Affordable spectroscopy for 1m-class telescopes: recent developments and applications

    Get PDF
    Doppler observations of exoplanet systems have been a very expensive technique, mainly due to the high costs of high-resolution stable spectrographs. Recent advances in instrumentation enable affordable Doppler planet detections with surprisingly small optical telescopes. We investigate the possibility of measuring Doppler reflex motion of planet hosting stars with small-aperture telescopes that have traditionally been neglected for this kind of studies. After thoroughly testing the recently developed and commercially available Shelyak eShel echelle spectrograph, we demonstrated that it is routinely possible to achieve velocity precision at the 100 m s(-1) level, reaching down to +/- 50 m s(-1) for the best cases. We describe our off-the-shelf instrumentation, including a new 0.5m RC telescope at the Gothard Astrophysical Observatory of Lorand Eotvos University equipped with an intermediate resolution fiber-fed echelle spectrograph. We present some follow-up radial velocity measurements of planet hosting stars and point out that updating the orbital solution of Doppler-planets is a very important task that can be fulfilled with sub-meter sized optical telescopes without requesting very expensive telescope times on 2-4 m (or larger) class telescopes

    Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster

    Get PDF
    Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance

    High field level crossing studies on spin dimers in the low dimensional quantum spin system Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T=Ni,Co,Fe,Mn

    Full text link
    In this paper we demonstrate the application of high magnetic fields to study the magnetic properties of low dimensional spin systems. We present a case study on the series of 2-leg spin-ladder compounds Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T = Ni, Co, Fe and Mn. In all compounds the transition metal is in the T2+T^{2+} high spin configuation. The localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The magnetic properties were examined experimentally by magnetic susceptibility, pulsed high field magnetization and specific heat measurements. The data are analysed using a spin hamiltonian description. Although the transition metal ions form structurally a 2-leg ladder, an isolated dimer model consistently describes the observations very well. This behaviour can be understood in terms of the different coordination and superexchange angles of the oxalate ligands along the rungs and legs of the 2-leg spin ladder. All compounds exhibit magnetic field driven ground state changes which at very low temperatures lead to a multistep behaviour in the magnetization curves. In the Co and Fe compounds a strong axial anisotropy induced by the orbital magnetism leads to a nearly degenerate ground state and a strongly reduced critical field. We find a monotonous decrease of the intradimer magnetic exchange if the spin quantum number is increased

    New Herbig-Haro Objects and Giant Outflows in Orion

    Get PDF
    We present the results of a photographic and CCD imaging survey for Herbig-Haro (HH) objects in the L1630 and L1641 giant molecular clouds in Orion. The new HH flows were initially identified from a deep H-alpha film from the recently commissioned AAO/UKST H-alpha Survey of the southern sky. Our scanned H-alpha and broad band R images highlight both the improved resolution of the H-alpha survey and the excellent contrast of the H-alpha flux with respect to the broad band R. Comparative IVN survey images allow us to distinguish between emission and reflection nebulosity. Our CCD H-alpha, [SII], continuum and I band images confirm the presence of a parsec-scale HH flow associated with the Ori I-2 cometary globule and several parsec-scale strings of HH emission centred on the L1641-N infrared cluster. Several smaller outflows display one-sided jets. Our results indicate that for declinations south of -6 degrees in L1641, parsec-scale flows appear to be the major force in the large-scale movement of optical dust and molecular gas.Comment: 14 pages, Latex using MN style, 21 figures in JPEG format. Higher resolution figures available from S.L. Mader. Accepted by MNRAS. Email contact for higher resolution images: [email protected]

    Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin

    Get PDF
    The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian- Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1-14.2 wt.% MgO, 459-657 ppm Cr, 455-564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins / sills which probably represent magmas crystallized near the crust-mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, Fe-Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by "normal" (crystal- and xenolith-poor) alkaline basalts

    HD 183648: a Kepler eclipsing binary with anomalous ellipsoidal variations and a pulsating component

    Get PDF
    KIC 8560861 (HD 183648) is a marginally eccentric (e = 0.05) eclipsing binary with an orbital period of P_(orb) = 31.973 d, exhibiting mmag amplitude pulsations on time-scales of a few days. We present the results of the complex analysis of high- and medium-resolution spectroscopic data and Kepler Q0 – Q16 long cadence photometry. The iterative combination of spectral disentangling, atmospheric analysis, radial velocity and eclipse timing variation studies, separation of pulsational features of the light curve, and binary light curve analysis led to the accurate determination of the fundamental stellar parameters. We found that the binary is composed of two main-sequence stars with an age of 0.9 ± 0.2 Gyr, having masses, radii and temperatures of M_1 = 1.93 ± 0.12 M_⊙, R_1 = 3.30 ± 0.07 R_⊙, T_(eff1) = 7650 ± 100 K for the primary, and M_2 = 1.06 ± 0.08 M_⊙, R_2 = 1.11 ± 0.03 R_⊙, T_(eff2) = 6450 ± 100 K for the secondary. After substracting the binary model, we found three independent frequencies, two of which are separated by twice the orbital frequency. We also found an enigmatic half orbital period sinusoidal variation that we attribute to an anomalous ellipsoidal effect. Both of these observations indicate that tidal effects are strongly influencing the luminosity variations of HD 183648. The analysis of the eclipse timing variations revealed both a parabolic trend, and apsidal motion with a period of P^(obs)_(apse) = 10400 ± 3000 y, which is ten times faster than what is theoretically expected. These findings might indicate the presence of a distant, unseen companion
    corecore