34 research outputs found

    Is the US failing women?

    Get PDF
    Claire T Roberts, Tanja Jankovic-Karasoulos, Anya L Arthur

    High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus

    Get PDF
    Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.Jessica M. Williamson, Anya L. Arthurs, Melanie D. Smith, Claire T. Roberts, and Tanja Jankovic-Karasoulo

    Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility

    Get PDF
    Trace elements such as zinc, copper, and selenium are essential for reproductive health, but there is limited work examining how circulating trace elements may associate with fertility in humans. The aim of this study was to determine the association between maternal plasma concentrations of zinc, copper, and selenium, and time to pregnancy and subfertility. Australian women (n = 1060) who participated in the multi-centre prospective Screening for Pregnancy Endpoints study were included. Maternal plasma concentrations of copper, zinc and selenium were assessed at 15 ± 1 weeks' gestation. Estimates of retrospectively reported time to pregnancy were documented as number of months to conceive; subfertility was defined as taking more than 12 months to conceive. A range of maternal and paternal adjustments were included. Women who had lower zinc (time ratio, 1.20 (0.99-1.44)) or who had lower selenium concentrations (1.19 (1.01-1.40)) had a longer time to pregnancy, equivalent to a median difference in time to pregnancy of around 0.6 months. Women with low selenium concentrations were also at a 1.46 (1.06-2.03) greater relative risk for subfertility compared to women with higher selenium concentrations. There were no associations between copper and time to pregnancy or subfertility. Lower selenium and zinc trace element concentrations, which likely reflect lower dietary intakes, associate with a longer time to pregnancy. Further research supporting our work is required, which may inform recommendations to increase maternal trace element intake in women planning a pregnancy.Jessica A. Grieger, Luke E. Grzeskowiak, Rebecca L. Wilson, Tina Bianco-Miotto, Shalem Y. Leemaqz, Tanja Jankovic-Karasoulos, Anthony V. Perkins, Robert J. Norman, Gus A. Dekker and Claire T. Robert

    Large-scale transcriptome-wide profiling of microRNAs in human placenta and maternal plasma at early to mid gestation

    Get PDF
    Published online: 19 Aug 2021MicroRNAs (miRNAs) are increasingly seen as important regulators of placental development and opportunistic biomarker targets. Given the difficulty in obtaining samples from early gestation and subsequent paucity of the same, investigation of the role of miRNAs in early gestation human placenta has been limited. To address this, we generated miRNA profiles using 96 placentas from presumed normal pregnancies, across early gestation, in combination with matched profiles from maternal plasma. Placenta samples range from 6 to 23 weeks' gestation, a time period that includes placenta from the early, relatively low but physiological (6-10 weeks' gestation) oxygen environment, and later, physiologically normal oxygen environment (11-23 weeks' gestation).We identified 637 miRNAs with expression in 86 samples (after removing poor quality samples), showing a clear gestational age gradient from 6 to 23 weeks' gestation. We identified 374 differentially expressed (DE) miRNAs between placentas from 6-10 weeks' versus 11-23 weeks' gestation. We see a clear gestational age group bias in miRNA clusters C19MC, C14MC, miR-17 ~ 92 and paralogs, regions that also include many DE miRNAs. Proportional change in expression of placenta-specific miRNA clusters was reflected in maternal plasma.The presumed introduction of oxygenated maternal blood into the placenta (between ~10 and 12 weeks' gestation) changes the miRNA profile of the chorionic villus, particularly in placenta-specific miRNA clusters. Data presented here comprise a clinically important reference set for studying early placenta development and may underpin the generation of minimally invasive methods for monitoring placental health.Melanie D. Smith, Katherine Pillman, Tanja Jankovic-Karasoulos, Dale McAninch, Qianhui Wan, K. Justinian Bogias ... et al

    DraculR: A Web-Based Application for In Silico Haemolysis Detection in High-Throughput microRNA Sequencing Data

    Get PDF
    The search for novel microRNA (miRNA) biomarkers in plasma is hampered by haemolysis, the lysis and subsequent release of red blood cell contents, including miRNAs, into surrounding fluid. The biomarker potential of miRNAs comes in part from their multicompartment origin and the longlived nature of miRNA transcripts in plasma, giving researchers a functional window for tissues that are otherwise difficult or disadvantageous to sample. The inclusion of red-blood-cell-derived miRNA transcripts in downstream analysis introduces a source of error that is difficult to identify posthoc and may lead to spurious results. Where access to a physical specimen is not possible, our tool will provide an in silico approach to haemolysis prediction. We present DraculR, an interactive Shiny/R application that enables a user to upload miRNA expression data from a short-read sequencing of human plasma as a raw read counts table and interactively calculate a metric that indicates the degree of haemolysis contamination. The code, DraculR web tool and its tutorial are freely available as detailed herein.Melanie D. Smith, Shalem Y. Leemaqz, Tanja Jankovic-Karasoulos, Dylan McCullough, Dale McAninch, Anya L. Arthurs, James Breen, Claire T. Roberts, and Katherine A. Pillma

    Viperin is an important host restriction factor in control of Zika virus infection

    Get PDF
    Published online 30 June 2017Zika virus (ZIKV) infection has emerged as a global health threat and infection of pregnant women causes intrauterine growth restriction, spontaneous abortion and microcephaly in newborns. Here we show using biologically relevant cells of neural and placental origin that following ZIKV infection, there is attenuation of the cellular innate response characterised by reduced expression of IFN-β and associated interferon stimulated genes (ISGs). One such ISG is viperin that has well documented antiviral activity against a wide range of viruses. Expression of viperin in cultured cells resulted in significant impairment of ZIKV replication, while MEFs derived from CRISPR/Cas9 derived viperin-/- mice replicated ZIKV to higher titers compared to their WT counterparts. These results suggest that ZIKV can attenuate ISG expression to avoid the cellular antiviral innate response, thus allowing the virus to replicate unchecked. Moreover, we have identified that the ISG viperin has significant anti-ZIKV activity. Further understanding of how ZIKV perturbs the ISG response and the molecular mechanisms utilised by viperin to suppress ZIKV replication will aid in our understanding of ZIKV biology, pathogenesis and possible design of novel antiviral strategies.Kylie H. Van der Hoek, Nicholas S. Eyre, Byron Shue, Onruedee Khantisitthiporn, Kittirat Glab-Ampi, Jillian M. Carr, Matthew J. Gartner, Lachlan A. Jolly, Paul Q. Thomas, Fatwa Adikusuma, Tanja Jankovic-Karasoulos, Claire T. Roberts, Karla J. Helbig and Michael R. Bear

    Maternal folate, one-carbon metabolism and pregnancy outcomes

    Get PDF
    Single nucleotide polymorphisms and pre- and peri-conception folic acid (FA) supplementation and dietary data were used to identify one-carbon metabolic factors associated with pregnancy outcomes in 3196 nulliparous women. In 325 participants, we also measured circulating folate, vitamin B12 and homocysteine. Pregnancy outcomes included preeclampsia (PE), gestational hypertension (GHT), small for gestational age (SGA), spontaneous preterm birth (sPTB) and gestational diabetes mellitus (GDM). Study findings show that maternal genotype MTHFR A1298C(CC) was associated with increased risk for PE, whereas TCN2 C766G(GG) had a reduced risk for sPTB. Paternal MTHFR A1298C(CC) and MTHFD1 G1958A(AA) genotypes were associated with reduced risk for sPTB, whereas MTHFR C677T(CT) genotype had an increased risk for GHT. FA supplementation was associated with higher serum folate and vitamin B12 concentrations, reduced uterine artery resistance index and increased birth weight. Women who supplemented with <800 μg daily FA at 15-week gestation had a higher incidence of PE (10.3%) compared with women who did not supplement (6.1%) or who supplemented with ≥800 μg (5.4%) (P < .0001). Higher serum folate levels were found in women who later developed GDM compared with women with uncomplicated pregnancies (Mean ± SD: 37.6 ± 8 nmol L-1 vs. 31.9 ± 11.2, P = .007). Fast food consumption was associated with increased risk for developing GDM, whereas low consumption of green leafy vegetables and fruit were independent risk factors for SGA and GDM and sPTB and SGA, respectively. In conclusion, maternal and paternal genotypes, together with maternal circulating folate and homocysteine concentrations, and pre- and early-pregnancy dietary factors, are independent risk factors for pregnancy complications.Tanja Jankovic-Karasoulos, Denise L. Furness, Shalem Y. Leemaqz, Gustaaf A. Dekker, Luke E. Grzeskowiak, Jessica A. Grieger, Prabha H. Andraweera, Dylan McCullough, Dale McAninch, Lesley M. McCowan, Tina Bianco-Miotto, Claire T. Robert

    Zinc is a critical regulator of placental morphogenesis and maternal hemodynamics during pregnancy in mice

    Get PDF
    Zinc is an essential micronutrient in pregnancy and zinc deficiency impairs fetal growth. We used a mouse model of moderate zinc deficiency to investigate the physiological mechanisms by which zinc is important to placental morphogenesis and the maternal blood pressure changes during pregnancy. A 26% reduction in circulating zinc (P = 0.005) was exhibited in mice fed a moderately zinc-deficient diet. Zinc deficiency in pregnancy resulted in an 8% reduction in both near term fetal and placental weights (both P < 0.0001) indicative of disrupted placental development and function. Detailed morphological analysis confirmed changes to the placental labyrinth microstructure. Continuous monitoring of maternal mean arterial pressure (MAP) revealed a late gestation decrease in the zinc-deficient dams. Differential expression of a number of regulatory genes within maternal kidneys supported observations on MAP changes in gestation. Increased MAP late in gestation is required to maintain perfusion of multiple placentas within rodent pregnancies. Decreased MAP within the zinc-deficient dams implies reduced blood flow and nutrient delivery to the placenta. These findings show that adequate zinc status is required for correct placental morphogenesis and appropriate maternal blood pressure adaptations to pregnancy. We conclude that insufficient maternal zinc intake from before and during pregnancy is likely to impact in utero programming of offspring growth and development largely through effects to the placenta and maternal cardiovascular system.Rebecca L. Wilson, Shalem Y. Leemaqz, Zona Goh, Dale McAninch, Tanja Jankovic- Karasoulos, Gabriela E. Leghi, Jessica A. Phillips, Katrina Mirabito Colafella, Cuong Tran, Sean O’Leary, Sam Buckberry, Stephen Pederson, Sarah A. Robertson, Tina Bianco-Miotto, Claire T. Robert

    COVID-19 in pregnancy: What we know from the first year of the pandemic

    No full text
    The COVID-19 pandemic has infected nearly 178 million people and claimed the lives of over 3.8 million in less than 15 months. This has prompted a flurry of research studies into the mechanisms and effects of SARS-CoV-2 viral infection in humans. However, studies examining the effects of COVID-19 in pregnant women, their placentae and their babies remain limited. Furthermore, reports of safety and efficacy of vaccines for SARS-CoV-2 in pregnancy are limited. This review concisely summarises the case studies and research on COVID-19 in pregnancy, to date. It also reviews the mechanism of infection with SARS-CoV-2, and its reliance and effects upon the renin-angiotensinaldosterone system. Overall, the data suggest that infection during pregnancy can be dangerous at any time, but this risk to both the mother and fetus, as well as placental damage, increases during the third trimester. The possibility of vertical transmission, which is explored in this review, remains contentious. However, maternal infection with SARS-CoV-2 can increase risk of miscarriage, preterm birth and stillbirth, which is likely due to damage to the placenta.Anya Lara Arthurs, Tanja Jankovic-Karasoulos, Claire Trelford Robert

    Circular RNAs in Pregnancy and the Placenta

    Get PDF
    The emerging field of circular RNAs (circRNAs) has identified their novel roles in the development and function of many cancers and inspired the interest of many researchers. circRNAs are also found throughout the healthy body, as well as in other pathological states, but while research into the function and abundance of circRNAs has progressed, our overall understanding of these molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA production in cancer are also highly expressed in the placenta, it is likely that the same genes act in the production of circRNAs in the placenta. Furthermore, placental development can be referred to as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to pregnancy success but also may provide novel insights for cancer progression. This review illuminates the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential placental expressions of circRNAs between complicated and uncomplicated pregnancies.Anya L. Arthurs, Tanja Jankovic-Karasoulos, Melanie D. Smith and Claire T. Robert
    corecore