20 research outputs found

    Variant Chromatin Structure of the oriP Region of Epstein-Barr Virus and Regulation of EBER1 Expression by Upstream Sequences and oriP

    No full text
    Most of the Epstein-Barr virus genome in latently infected cells is in a standard nucleosomal structure, but the region encompassing oriP and the Epstein-Barr virus-encoded small RNA (EBER) genes shows a distinctive pattern when digested with micrococcal nuclease. This pattern corresponds to a previously mapped nuclear matrix attachment region. Although the EBER genes are adjacent to oriP, there is only a two- to fourfold effect of oriP on EBER expression. However, sequences containing a consensus ATF site upstream of EBER1 are important for EBER1 expression

    Activation of TRAF5 and TRAF6 Signal Cascades Negatively Regulates the Latent Replication Origin of Epstein-Barr Virus through p38 Mitogen-Activated Protein Kinase

    No full text
    Latent Epstein-Barr virus (EBV) is maintained by the virus replication origin oriP that initiates DNA replication with the viral oriP-binding factor EBNA1. However, it is not known whether oriP's replicator activity is regulated by virus proteins or extracellular signals. By using a transient replication assay, we found that a low level of expression of viral signal transduction activator latent membrane protein 1 (LMP1) suppressed oriP activity. The binding site of the tumor necrosis factor receptor-associated factor (TRAF) of LMP1 was essential for this suppressive effect. Activation of the TRAF signal cascade by overexpression of TRAF5 and/or TRAF6 also suppressed oriP activity. Conversely, blocking of TRAF signaling with dominant negative mutants of TRAF5 and TRAF6, as well as inhibition of a downstream signal mediator p38 MAPK, released the LMP1-induced oriP suppression. Furthermore, activation of TRAF6 signal cascade by lipopolysaccharides (LPS) resulted in loss of EBV from Burkitt's lymphoma cell line Akata, and inhibition of p38 MAPK abolished the suppressive effect of LPS. These results suggested that the level of oriP activity is regulated by LMP1 and extracellular signals through TRAF5- and TRAF6-mediated signal cascades
    corecore