13 research outputs found

    Low Temperature Spectroscopy of Solid State Quantum Systems

    Get PDF
    Control and coupling of individual quantum systems remains an important research area in experimental quantum information. Single quantum systems in the solid state offer many attractive properties in terms of isolation and control: strong interaction due to close proximity, and scalability using mature fabrication techniques. Similar to atoms, many solid state quantum systems can couple to photons, offering potential for long-range interaction. Two such candidate systems are the nitrogen vacancy center in diamond, and the nanowire semiconductor quantum dot. These systems can act like isolated atoms in a solid state system, and can serve as sources of indistinguishable photons. This report discusses low temperature excitation of these systems, a regime in which the spectral properties are desirable for applications in quantum information, such as long-distance entanglement

    Towards Quantum Sensing of Chiral-Induced Spin Selectivity: Probing Donor-Bridge-Acceptor Molecules with NV Centers in Diamond

    Full text link
    Photoexcitable donor-bridge-acceptor (D-B-A) molecules that support intramolecular charge transfer are ideal platforms to probe the influence of chiral-induced spin selectivity (CISS) in electron transfer and resulting radical pairs. In particular, the extent to which CISS influences spin polarization or spin coherence in the initial state of spin-correlated radical pairs following charge transfer through a chiral bridge remains an open question. Here, we introduce a quantum sensing scheme to measure directly the hypothesized spin polarization in radical pairs using shallow nitrogen-vacancy (NV) centers in diamond at the single- to few-molecule level. Importantly, we highlight the perturbative nature of the electron spin-spin dipolar coupling within the radical pair, and demonstrate how Lee-Goldburg decoupling can preserve spin polarization in D-B-A molecules for enantioselective detection by a single NV center. The proposed measurements will provide fresh insight into spin selectivity in electron transfer reactions.Comment: 7 pages and 4 pages appendix including an extensive description of the initial spin state of photo-generated radical pair

    Multicone Diamond Waveguides for Nanoscale Quantum Sensing

    Full text link
    The long-lived electronic spin of the nitrogen-vacancy (NV) center in diamond is a promising quantum sensor for detecting nanoscopic magnetic and electric fields in a variety of experimental conditions. Nevertheless, an outstanding challenge in improving measurement sensitivity is the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques. Here, we address this limitation by coupling individual NV centers to optimized diamond nanopillar structures, thereby improving optical collection efficiency of fluorescence. First, we optimize the structure in simulation, observing an increase in collection efficiency for tall (\geq 5 μ\mum) pillars with tapered sidewalls. We subsequently verify these predictions by fabricating and characterizing a representative set of structures using a reliable and reproducible nanofabrication process. An optimized device yields increased SNR, owing to improvements in collimation and directionality of emission. Promisingly, these devices are compatible with low-numerical-aperture, long-working-distance collection optics, as well as reduced tip radius, facilitating improved spatial resolution for scanning applications.Comment: 22 pages, five figure

    Single Nitrogen-Vacancy-NMR of Amine-Functionalized Diamond Surfaces

    Full text link
    Nuclear magnetic resonance (NMR) imaging with shallow nitrogen-vacancy (NV) centers in diamond offers an exciting route toward sensitive and localized chemical characterization at the nanoscale. Remarkable progress has been made to combat the degradation in coherence time and stability suffered by near-surface NV centers using suitable chemical surface termination. However, approaches that also enable robust control over adsorbed molecule density, orientation, and binding configuration are needed. We demonstrate a diamond surface preparation for mixed nitrogen- and oxygen-termination that simultaneously improves NV center coherence times for emitters <10-nm-deep and enables direct and recyclable chemical functionalization via amine-reactive crosslinking. Using this approach, we probe single NV centers embedded in nanopillar waveguides to perform 19F^{19}\mathrm{F} NMR sensing of covalently bound trifluoromethyl tags in the ca. 50-100 molecule regime. This work signifies an important step toward nuclear spin localization and structure interrogation at the single-molecule level.Comment: 21 pages and 16 pages supporting informatio

    Diamond surface engineering for molecular sensing with nitrogen-vacancy centers

    No full text
    Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen-vacancy (NV) center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality. Notably, near-surface defects facilitate detection of the minute magnetic fields generated by nuclear or electron spins outside of the diamond crystal, such as those in chemisorbed and physisorbed molecules. However, the promise of NV centers is hindered by a severe degradation of critical sensor properties, namely charge stability and spin coherence, near surfaces (< ca. 10 nm deep). Moreover, applications in the chemical sciences require methods for covalent bonding of target molecules to diamond with robust control over density, orientation, and binding configuration. This forward-looking Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules. We outline the diamond surface properties that are advantageous for NV-sensing applications, and discuss strategies to mitigate deleterious effects while simultaneously providing avenues for chemical attachment. Finally, we present an outlook on emerging applications in which the unprecedented sensitivity and spatial resolution of NV-based sensing could provide unique insight into chemically functionalized surfaces at the single-molecule level.ISSN:2050-7526ISSN:2050-753
    corecore