thesis

Low Temperature Spectroscopy of Solid State Quantum Systems

Abstract

Control and coupling of individual quantum systems remains an important research area in experimental quantum information. Single quantum systems in the solid state offer many attractive properties in terms of isolation and control: strong interaction due to close proximity, and scalability using mature fabrication techniques. Similar to atoms, many solid state quantum systems can couple to photons, offering potential for long-range interaction. Two such candidate systems are the nitrogen vacancy center in diamond, and the nanowire semiconductor quantum dot. These systems can act like isolated atoms in a solid state system, and can serve as sources of indistinguishable photons. This report discusses low temperature excitation of these systems, a regime in which the spectral properties are desirable for applications in quantum information, such as long-distance entanglement

    Similar works