44 research outputs found

    Stress-Induced Changes In Extracellular Dopamine And Serotonin In The Medial Prefrontal Cortex And Dorsal Hippocampus Of Prenatally Malnourished Rats

    Get PDF
    Prenatal protein malnutrition continues to be a significant problem in the world today. Exposure to prenatal protein malnutrition increases the risk of a number of neuropsychiatric disorders in adulthood including depression, schizophrenia and attentional deficit disorder. In the present experiment we have examined the effects of stress on extracellular serotonin (5-HT) and dopamine in the medial prefrontal cortex and dorsal hippocampus of rats exposed in utero to protein malnutrition. The medial prefrontal cortex and dorsal hippocampus were chosen as two limbic forebrain regions involved in learning and memory, attention and the stress response. Extracellular 5-HT and dopamine were determined in the medial prefrontal cortex and dorsal hippocampus of adult male Sprague-Dawley rats using dual probe in vivo microdialysis. Basal extracellular 5-HT did not differ between malnourished and well-nourished controls in either the medial prefrontal cortex or the dorsal hippocampus. Basal extracellular dopamine was significantly decreased in the medial prefrontal cortex of malnourished animals. Restraint stress (20 m) produced a significant rise in extracellular dopamine in the medial prefrontal cortex of well-nourished rats but did not alter release in malnourished rats. In malnourished rats, stress produced an increase in 5-HT in the hippocampus, whereas stress produced a decrease in 5-HT in the hippocampus of well-nourished rats. These data demonstrate that prenatal protein malnutrition alters dopaminergic neurotransmission in the medial prefrontal cortex as well as altering the dopaminergic and serotonergic response to stress. These changes may provide part of the bases for alterations in malnourished animals’ response to stress

    Prenatal Protein Malnutrition Produces Resistance to Distraction Similar to Noradrenergic Deafferentation of the Prelimbic Cortex in a Sustained Attention Task

    Get PDF
    Exposure to malnutrition early in development increases likelihood of neuropsychiatric disorders, affective processing disorders, and attentional problems later in life. Many of these impairments are hypothesized to arise from impaired development of the prefrontal cortex. The current experiments examine the impact of prenatal malnutrition on the noradrenergic and cholinergic axons in the prefrontal cortex to determine if these changes contribute to the attentional deficits seen in prenatal protein malnourished rats (6% casein vs. 25% casein). Because prenatally malnourished animals had significant decreases in noradrenergic fibers in the prelimbic cortex with spared innervation in the anterior cingulate cortex and showed no changes in acetylcholine innervation of the prefrontal cortex, we compared deficits produced by malnutrition to those produced in adult rats by noradrenergic lesions of the prelimbic cortex. All animals were able to perform the baseline sustained attention task accurately. However, with the addition of visual distractors to the sustained attention task, animals that were prenatally malnourished and those that were noradrenergically lesioned showed cognitive rigidity, i.e., were less distractible than control animals. All groups showed similar changes in behavior when exposed to withholding reinforcement, suggesting specific attentional impairments rather than global difficulties in understanding response rules, bottom-up perceptual problems, or cognitive impairments secondary to dysfunction in sensitivity to reinforcement contingencies. These data suggest that prenatal protein malnutrition leads to deficits in noradrenergic innervation of the prelimbic cortex associated with cognitive rigidity

    Prenatal Protein Malnutrition Leads to Hemispheric Differences in the Extracellular Concentrations of Norepinephrine, Dopamine and Serotonin in the Medial Prefrontal Cortex of Adult Rats

    Get PDF
    Exposure to prenatal protein malnutrition (PPM) leads to a reprogramming of the brain, altering executive functions involving the prefrontal cortex (PFC). In this study we used in vivo microdialysis to assess the effects of PPM on extracellular concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) bilaterally in the ventral portion of the medial prefrontal cortex (vmPFC; ventral prelimbic and infralimbic cortices) of adult Long-Evans rats. Female Long-Evans rats were fed either a low protein (6%) or adequate protein diet (25%) prior to mating and throughout pregnancy. At birth, all litters were culled and fostered to dams fed a 25% (adequate) protein diet. At 120 days of age, 2 mm microdialysis probes were placed into left and right vmPFC. Basal extracellular concentrations of NE, DA, and 5-HT were determined over a 1-h period using HPLC. In rats exposed to PPM there was a decrease in extracellular concentrations of NE and DA in the right vmPFC and an increase in the extracellular concentration of 5-HT in the left vmPFC compared to controls (prenatally malnourished: N = 10, well-nourished: N = 20). Assessment of the cerebral laterality of extracellular neurotransmitters in the vmPFC showed that prenatally malnourished animals had a significant shift in laterality from the right to the left hemisphere for NE and DA but not for serotonin. In a related study, these animals showed cognitive inflexibility in an attentional task. In animals in the current study, NE levels in the right vmPFC of well-nourished animals correlated positively with performance in an attention task, while 5-HT in the left vmPFC of well-nourished rats correlated negatively with performance. These data, in addition to previously published studies, suggest a long-term reprogramming of the vmPFC in rats exposed to PPM which may contribute to attention deficits observed in adult animals exposed to PPM

    Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats. Brain Res

    Get PDF
    Prenatal protein malnutrition continues to be a significant problem in the world today. Exposure to prenatal protein malnutrition increases the risk of a number of neuropsychiatric disorders in adulthood including depression, schizophrenia and attentional deficit disorder. In the present experiment, we have examined the effects of stress on extracellular serotonin (5-HT) and dopamine in the medial prefrontal cortex and dorsal hippocampus of rats exposed in utero to protein malnutrition. The medial prefrontal cortex and dorsal hippocampus were chosen as two limbic forebrain regions involved in learning and memory, attention and the stress response. Extracellular 5-HT and dopamine were determined in the medial prefrontal cortex and dorsal hippocampus of adult male Sprague-Dawley rats using dual probe in vivo microdialysis. Basal extracellular 5-HT did not differ between malnourished and well-nourished controls in either the medial prefrontal cortex or the dorsal hippocampus. Basal extracellular dopamine was significantly decreased in the medial prefrontal cortex of malnourished animals. Restraint stress (20 m) produced a significant rise in extracellular dopamine in the medial prefrontal cortex of well-nourished rats but did not alter release in malnourished rats. In malnourished rats, stress produced an increase in 5-HT in the hippocampus, whereas stress produced a decrease in 5-HT in the hippocampus of well-nourished rats. These data demonstrate that prenatal protein malnutrition alters dopaminergic neurotransmission in the medial prefrontal cortex as well as alters the dopaminergic and serotonergic response to stress. These changes may provide part of the bases for alterations in malnourished animals' response to stress. Introduction Prenatal protein malnutrition affects a significant portion of the world's population. Our group has attempted to understand the consequences of malnutrition on the development of the brain in a rat model of prenatal protein malnutrition which exposes rats in utero to a low (6%) casein die

    The Journal of Nutrition Community and International Nutrition Infant Malnutrition Is Associated with Persisting Attention Deficits in Middle Adulthood 1-3

    Get PDF
    Abstract Infantile malnutrition is known to be associated with cognitive and behavioral impairment during childhood and adolescence. Data pertaining to longer-term effects on behavioral outcomes in adulthood are limited. In this study, we report associations between infantile malnutrition and attention problems in adults at midlife. Attention problems were assessed by the Conners Adult ADHD Rating Scales (CAARS) and the Conners Continuous Performance Test (CPT) in 145 Barbadian adults (aged 37-43 y) who had been followed longitudinally since childhood. Previously malnourished participants (n = 80) had experienced moderate to severe protein-energy malnutrition in the first year of life and were successfully rehabilitated thereafter. They were compared with healthy adults (n = 65) who were former classmates of the index cases and who had been matched for age, sex, and handedness in childhood. Multiple regression analyses showed persisting effects of childhood malnutrition on both the CAARS and the CPT, independent of effects of household standard of living assessed in childhood. The malnutrition effect on the CAARS ratings was independent of IQ, whereas this effect was attenuated for the CPT after adjustment for IQ. Teacher-reported attention problems in childhood predicted attention problems in adulthood, indicating continuity over the life span. Infantile malnutrition may have long-term effects on attentional processes nearly 40 y after the episode, even with excellent long-term nutritional rehabilitation and independent of socioeconomic conditions in childhood and adolescence. This finding has major public health implications for populations exposed to early childhood malnutrition

    Early childhood malnutrition impairs adult resting brain function using near-infrared spectroscopy

    Get PDF
    IntroductionEarly childhood malnutrition affects 200+ million children under 5 years of age worldwide and is associated with persistent cognitive, behavioral and psychiatric impairments in adulthood. However, very few studies have investigated the long-term effects of childhood protein-energy malnutrition (PEM) on brain function using a functional hemodynamic brain imaging technique.Objective and methodsThis study aims to investigate functional brain network alterations using near infrared spectroscopy (NIRS) in adults, aged 45–51 years, from the Barbados Nutrition Study (BNS) who suffered from a single episode of malnutrition restricted to their first year of life (n = 26) and controls (n = 29). A total of 55 individuals from the BNS cohort underwent NIRS recording at rest.Results and discussionUsing functional connectivity and permutation analysis, we found patterns of increased Pearson’s correlation with a specific vulnerability of the frontal cortex in the PEM group (ps < 0.05). Using a graph theoretical approach, mixed ANCOVAs showed increased segregation (ps = 0.0303 and 0.0441) and decreased integration (p = 0.0498) in previously malnourished participants compared to healthy controls. These results can be interpreted as a compensatory mechanism to preserve cognitive functions, that could also be related to premature or pathological brain aging. To our knowledge, this study is the first NIRS neuroimaging study revealing brain function alterations in middle adulthood following early childhood malnutrition limited to the first year of life

    Starving children: The tyranny of hunger

    No full text
    corecore