965 research outputs found

    Whispering-gallery-modelike-enhanced emission from ZnO nanodisk

    Get PDF
    Hexagonal nanodisks of ZnO were fabricated by a solution process using ZnO nanoparticles and their cathodoluminescence characteristics were investigated. Monochromatic cathodoluminescence images showed that luminescence was spatially localized near the boundary of the nanodisk and spectral analysis in conjunction with the intensity profile consistently ascribed the spatial localization of luminescence to whispering-gallery-modelike-enhanced emission.open117682sciescopu

    On-chip analysis, indexing and screening for chemical producing bacteria in microfluidic static droplet array

    Get PDF
    Economic production of chemicals from microbes necessitates development of high-producing strains and an efficient screening technology is crucial to maximize the effect of the most popular strain improvement method, the combinatorial approach. However, high-throughput screening has been limited for assessment of diverse intracellular metabolites at the single-cell level. Herein, we established a screening platform that couples a microfluidic static droplet array (SDA) and an artificial riboswitch to analyse intracellular metabolite concentration from single microbial cells. Using this system, we entrapped single Escherichia coli cells in SDA to measure intracellular L-tryptophan concentrations. It was validated that intracellular L-tryptophan concentration can be evaluated by the fluorescence from the riboswitch. Moreover, high-producing strains were successfully screened from a mutagenized library, exhibiting up to 145% productivity compared to its parental strain. This platform will be widely applicable to strain improvement for diverse metabolites by developing new artificial riboswitches.111713Ysciescopu

    The application of microalgae in removing organic micropollutants in wastewater

    Full text link
    © 2020, © 2020 Taylor & Francis Group, LLC. Micropollutants have become a serious environmental problem with several negative outcomes for human health and ecosystems. Many efforts have been made to remove micropollutants using a variety of physical, chemical and biological methods. By far, the most attention has been paid to microalgae-based technologies for wastewater treatment in order to obtain high-quality effluents, recover algal biomass for fertilizers, protein-rich feed, biofuel, and put them to other practical use. This paper reviews the potential of microalgae-based systems for the removal of organic micropollutants from open ponds to closed photobioreactors coupled by suspended microalgal cells, immobilized cells, or microalgae-microbial consortia. The inhibition of micropollutants on microalgae growth as well as micropollutant removal mechanisms performed by microalgae-based systems are also discussed. Other treatment methods for the removal of micropollutants are analyzed to show the advantages and limitations of microalgae-based treatment strategies, from which some possible combined systems can be suggested. Finally, some recommendations for future studies on this topic are proposed. (Figure presented.)

    Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria

    Get PDF
    In recent years, multidrug-resistant (MDR) bacteria have increased rapidly, representing a major threat to human health. This problem has created an urgent need to identify alternatives for the treatment of MDR bacteria. The aim of this study was to identify the antibacterial activity of selenium nanoparticles (SeNPs) and selenium nanowires (SeNWs) against MDR bacteria and assess the potential synergistic effects when combined with a conventional antibiotic (linezolid). SeNPs and SeNWs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, and UV-visible analysis. The antibacterial effects of SeNPs and SeNWs were confirmed by the macro-dilution minimum inhibi-tory concentration (MIC) test. SeNPs showed MIC values against methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vanco-mycin-resistant enterococci (VRE) at concentrations of 20, 80, 320, and >320 μg/mL, respectively. On the other hand, SeNWs showed a MIC value of >320 μg/mL against all tested bacteria. Therefore, MSSA, MRSA, and VRSA were selected for the bacteria to be tested, and SeNPs were selected as the antimicrobial agent for the following experiments. In the time-kill assay, SeNPs at a concentration of 4X MIC (80 and 320 μg/mL) showed bactericidal effects against MSSA and MRSA, respectively. At a concentration of 2X MIC (40 and 160 μg/mL), SeNPs showed bacteriostatic effects against MSSA and bactericidal effects against MRSA, respectively. In the synergy test, SeNPs showed a synergistic effect with linezolid (LZD) through protein degradation against MSSA and MRSA. In conclusion, these results suggest that SeNPs can be candidates for antibacterial substitutes and supplements against MDR bacteria for topical use, such as dressings. However, for use in clinical situations, additional experiments such as toxicity and synergistic mechanism tests of SeNPs are needed

    Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?

    Full text link
    © 2016 Elsevier B.V. This paper evaluated a novel pilot scale electrocoagulation (EC) system for improving total phosphorus (TP) removal from municipal wastewater. This EC system was operated in continuous and batch operating mode under differing conditions (e.g. flow rate, initial concentration, electrolysis time, conductivity, voltage) to evaluate correlative phosphorus and electrical energy consumption. The results demonstrated that the EC system could effectively remove phosphorus to meet current stringent discharge standards of less than 0.2 mg/L within 2 to 5 min. This target was achieved in all ranges of initial TP concentrations studied. It was also found that an increase in conductivity of solution, voltages, or electrolysis time, correlated with improved TP removal efficiency and reduced specific energy consumption. Based on these results, some key economic considerations, such as operating costs, cost-effectiveness, product manufacturing feasibility, facility design and retrofitting, and program implementation are also discussed. This EC process can conclusively be highly efficient in a relatively simple, easily managed, and cost-effective for wastewater treatment system

    Regional differences in prostaglandin E₂ metabolism in human colorectal cancer liver metastases

    Get PDF
    Background: Prostaglandin (PG) E₂ plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGE₂ catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGE₂ content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGE₂ in human CRC cells in vitro. Methods: Tissue from the periphery and centre of 20 human CRCLM was analysed for PGE₂ levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) β. Results: PGE₂ levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGE₂. Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo.Conclusions: There is significant intra-tumoral heterogeneity in PGE₂ content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGE₂ metabolism should be targeted for novel treatment of advanced CRC

    Maca (L. meyenii) for improving sexual function: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maca (<it>Lepidium meyenii</it>) is an Andean plant of the brassica (mustard) family. Preparations from maca root have been reported to improve sexual function. The aim of this review was to assess the clinical evidence for or against the effectiveness of the maca plant as a treatment for sexual dysfunction.</p> <p>Methods</p> <p>We searched 17 databases from their inception to April 2010 and included all randomised clinical trials (RCTs) of any type of maca <it/>compared to a placebo for the treatment of healthy people or human patients with sexual dysfunction. The risk of bias for each study was assessed using Cochrane criteria, and statistical pooling of data was performed where possible. The selection of studies, data extraction, and validations were performed independently by two authors. Discrepancies were resolved through discussion by the two authors.</p> <p>Results</p> <p>Four RCTs met all the inclusion criteria. Two RCTs suggested a significant positive effect of maca on sexual dysfunction or sexual desire in healthy menopausal women or healthy adult men, respectively, while the other RCT failed to show any effects in healthy cyclists. The further RCT assessed the effects of maca in patients with erectile dysfunction using the International Index of Erectile Dysfunction-5 and showed significant effects.</p> <p>Conclusion</p> <p>The results of our systematic review provide limited evidence for the effectiveness of maca in improving sexual function. However, the total number of trials, the total sample size, and the average methodological quality of the primary studies were too limited to draw firm conclusions. More rigorous studies are warranted.</p

    Clinical and molecular characterization of a transmitted reciprocal translocation t(1;12)(p32.1;q21.3) in a family co-segregating with mental retardation, language delay, and microcephaly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome translocation associated with neurodevelopmental disorders provides an opportunity to identify new disease-associated genes and gain new insight into their function. During chromosome analysis, we identified a reciprocal translocation between chromosomes 1p and 12q, t(1; 12)(p32.1; q21.3), co-segregating with microcephaly, language delay, and severe psychomotor retardation in a mother and her two affected boys.</p> <p>Methods</p> <p>Fluorescence in situ hybridization (FISH), long-range PCR, and direct sequencing were used to map the breakpoints on chromosomes 1p and 12q. A reporter gene assay was conducted in human neuroblastoma (SKNSH) and Chinese hamster ovary (CHO) cell lines to assess the functional implication of the fusion sequences between chromosomes 12 and 1.</p> <p>Results</p> <p>We determined both breakpoints at the nucleotide level. Neither breakpoint disrupted any known gene directly. The breakpoint on chromosome 1p was located amid a gene-poor region of ~ 1.1 Mb, while the breakpoint on chromosome 12q was located ~ 3.4 kb downstream of the ALX1 gene, a homeobox gene. In the reporter gene assay, we discovered that the fusion sequences construct between chromosomes 12 and 1 had a ~ 1.5 to 2-fold increased reporter gene activity compared with the corresponding normal chromosome 12 sequences construct.</p> <p>Conclusion</p> <p>Our findings imply that the translocation may enhance the expression of the ALX1 gene via the position effect and result in the clinical symptoms of this family. Our findings may also expand the clinical phenotype spectrum of ALX1-related human diseases as loss of the ALX1 function was recently reported to result in abnormal craniofacial development.</p

    Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins

    Get PDF
    Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of &lt; 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins

    The antioxidant enzyme peroxiredoxin-2 is depleted in lymphocytes seven days after ultra-endurance exercise

    Get PDF
    Purpose: Peroxiredoxin-2 (PRDX-2) is an antioxidant and chaperone-like protein critical for cell function. This study examined whether the levels of lymphocyte PRDX-2 are altered over one month following ultra-endurance exercise. Methods: Nine middle-aged men undertook a single-stage, multi-day 233 km (145 mile) ultra-endurance running race. Blood was collected immediately before (PRE), upon completion/retirement (POST), and following the race at DAY 1, DAY 7 and DAY 28. Lymphocyte lysates were examined for PRDX-2 by reducing SDS-PAGE and western blotting. In a sub-group of men who completed the race (n = 4) PRDX-2 oligomeric state (indicative of redox status) was investigated. Results: Ultra-endurance exercise caused significant changes in lymphocyte PRDX-2 (F (4,32) 3.409, p=0.020, ?(2) =0.299): seven-days after the race, PRDX-2 levels in lymphocytes had fallen to 30% of pre-race values (p=0.013) and returned to near-normal levels at DAY 28. Non-reducing gels demonstrated that dimeric PRDX-2 (intracellular reduced PRDX-2 monomers) was increased in 3 of 4 race completers immediately post-race, indicative of an "antioxidant response". Moreover, monomeric PRDX-2 was also increased immediately post-race in 2 of 4 race-completing subjects, indicative of oxidative damage, which was not detectable by DAY 7. Conclusions: Lymphocyte PRDX-2 was decreased below normal levels 7 days after ultra-endurance exercise. Excessive accumulation of reactive oxygen species induced by ultra-endurance exercise may underlie depletion of lymphocyte PRDX-2 by triggering its turnover after oxidation. Low levels of lymphocyte PRDX-2 could influence cell function and might, in part, explain reports of dysregulated immunity following ultra-endurance exercise
    corecore