20,354 research outputs found

    Pressure effects on the heavy-fermion antiferromagnet CeAuSb2

    Full text link
    The f-electron compound CeAuSb2, which crystallizes in the ZrCuSi2-type tetragonal structure, orders antiferromagnetically between 5 and 6.8 K, where the antiferromagnetic transition temperature T_N depends on the occupancy of the Au site. Here we report the electrical resistivity and heat capacity of a high-quality crystal CeAuSb2 with T_N of 6.8 K, the highest for this compound. The magnetic transition temperature is initially suppressed with pressure, but is intercepted by a new magnetic state above 2.1 GPa. The new phase shows a dome shape with pressure and coexists with another phase at pressures higher than 4.7 GPa. The electrical resistivity shows a T^2 Fermi liquids behavior in the complex magnetic state, and the residual resistivity and the T^2 resistivity coefficient increases with pressure, suggesting the possibility of a magnetic quantum critical point at a higher pressure.Comment: 5 pages, 5 firure

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    Hybridization gap and Fano resonance in SmB6{_6}

    Full text link
    We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the "Kondo insulator" SmB6_6. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstructed, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.Comment: 5 pages, 4 figure

    New Physics Effects From B Meson Decays

    Full text link
    In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from B-meson decays, taking R-parity conserving and violating supersymmetry as illustrative examples.Comment: Talk given at the Sixth Workshop on High Energy Particle Phenomenology (WHEPP-6), Chennai (Madras), India. Includes 2 epsf figure

    Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2

    Full text link
    We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
    corecore