15,659 research outputs found
Robust Upward Dispersion of the Neutron Spin Resonance in the Heavy Fermion Superconductor CeYbCoIn
The neutron spin resonance is a collective magnetic excitation that appears
in copper oxide, iron pnictide, and heavy fermion unconventional
superconductors. Although the resonance is commonly associated with a
spin-exciton due to the ()-wave symmetry of the superconducting
order parameter, it has also been proposed to be a magnon-like excitation
appearing in the superconducting state. Here we use inelastic neutron
scattering to demonstrate that the resonance in the heavy fermion
superconductor CeYbCoIn with has a ring-like
upward dispersion that is robust against Yb-doping. By comparing our
experimental data with random phase approximation calculation using the
electronic structure and the momentum dependence of the -wave
superconducting gap determined from scanning tunneling microscopy for
CeCoIn, we conclude the robust upward dispersing resonance mode in
CeYbCoIn is inconsistent with the downward dispersion
predicted within the spin-exciton scenario.Comment: Supplementary Information available upon reques
Exchange anisotropy and the dynamic phase transition in thin ferromagnetic Heisenberg films
Monte Carlo simulations have been performed to investigate the dependence of
the dynamic phase behavior on the bilinear exchange anisotropy of a classical
Heisenberg spin system. The system under consideration is a planar thin
ferromagnetic film with competing surface fields subject to a pulsed
oscillatory external field. The results show that the films exhibit a single
discontinuous dynamic phase transition (DPT) as a function of the anisotropy of
the bilinear exchange interaction in the Hamiltonian. Furthermore there is no
evidence of stochastic resonance (SR) associated with the DPT. These results
are in marked contrast to the continuous DPT observed in the same system as a
function of temperature and applied field strength for a fixed bilinear
exchange anisotropy.Comment: 11 pages including 3 figure pages; submitted to PR
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Hysteresis and the dynamic phase transition in thin ferromagnetic films
Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic
films subject to an oscillatory external field have been studied by Monte Carlo
simulation. The model under investigation is a classical Heisenberg spin system
with a bilinear exchange anisotropy in a planar thin film geometry with
competing surface fields. The film exhibits a non-equilibrium phase transition
between dynamically ordered and dynamically disordered phases characterized by
a critical temperature Tcd, whose location of is determined by the amplitude H0
and frequency w of the applied oscillatory field. In the presence of competing
surface fields the critical temperature of the ferromagnetic-paramagnetic
transition for the film is suppressed from the bulk system value, Tc, to the
interface localization-delocalization temperature Tci. The simulations show
that in general Tcd < Tci for the model film. The profile of the time-dependent
layer magnetization across the film shows that the dynamically ordered and
dynamically disordered phases coexist within the film for T < Tcd. In the
presence of competing surface fields, the dynamically ordered phase is
localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos
added; to be published in PR
AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways
AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways
Production and optical properties of liquid scintillator for the JSNS experiment
The JSNS (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron
Source) experiment will search for neutrino oscillations over a 24 m short
baseline at J-PARC. The JSNS inner detector will be filled with 17 tons
of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of
unloaded LS in the intermediate -catcher and outer veto volumes.
JSNS has chosen Linear Alkyl Benzene (LAB) as an organic solvent because
of its chemical properties. The unloaded LS was produced at a refurbished
facility, originally used for scintillator production by the RENO experiment.
JSNS plans to use ISO tanks for the storage and transportation of the LS.
In this paper, we describe the LS production, and present measurements of its
optical properties and long term stability. Our measurements show that storing
the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
- …