53 research outputs found

    Robust Upward Dispersion of the Neutron Spin Resonance in the Heavy Fermion Superconductor Ce1x_{1-x}Ybx_{x}CoIn5_5

    Get PDF
    The neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the dd(s±s^{\pm})-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1x_{1-x}Ybx_{x}CoIn5_5 with x=0,0.05,0.3x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation using the electronic structure and the momentum dependence of the dx2y2d_{x^2-y^2}-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn5_5, we conclude the robust upward dispersing resonance mode in Ce1x_{1-x}Ybx_{x}CoIn5_5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.Comment: Supplementary Information available upon reques

    Observation of two-dimensional Fermi surface and Dirac dispersion in YbMnSb2_2

    Full text link
    We present the crystal structure, electronic structure, and transport properties of the material YbMnSb2_2, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a 2D Fermi surface arising from a Dirac dispersion, consistent with the predictions of density functional theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.Comment: 8 pages, 6 figure

    Entropy-Aware Model Initialization for Effective Exploration in Deep Reinforcement Learning

    No full text
    Effective exploration is one of the critical factors affecting performance in deep reinforcement learning. Agents acquire data to learn the optimal policy through exploration, and if it is not guaranteed, the data quality deteriorates, which leads to performance degradation. This study investigates the effect of initial entropy, which significantly influences exploration, especially in the early learning stage. The results of this study on tasks with discrete action space show that (1) low initial entropy increases the probability of learning failure, (2) the distributions of initial entropy for various tasks are biased towards low values that inhibit exploration, and (3) the initial entropy for discrete action space varies with both the initial weight and task, making it hard to control. We then devise a simple yet powerful learning strategy to deal with these limitations, namely, entropy-aware model initialization. The proposed algorithm aims to provide a model with high initial entropy to a deep reinforcement learning algorithm for effective exploration. Our experiments showed that the devised learning strategy significantly reduces learning failures and enhances performance, stability, and learning speed
    corecore