47 research outputs found

    Biological and structural characterizations of mutations in X-linked spondyloepiphyseal dysplasia tarda

    Get PDF
    Spondyloepiphyseal dysplasia tarda (SEDT), an X-linked genetic disease manifesting itself in a disproportionate skeletal structure, is caused by mutations in the SEDL gene. Four missense mutations (S73L, V130D, F83S, and D47Y) have been identified by molecular diagnosis as disease-causing SEDT. Nevertheless, how SEDL mutations disrupt the skeletal structure and cause disease remains unknown. We report here the cloning, expression, and characterization of three different missense mutations (S73L, V130D, and D47Y) in mouse SEDL. The overexpression of the D47Y mutation was mainly observed in the supernatant but those of the S73L and V130D mutations are shown in the insoluble pellets. The substitution of the S73L mutation induces the exposure to hydrophobic amino acids and causes aggregation. That of V130D might break hydrophobic interaction and decrease the secondary structure. The CD spectra of three mutants (S73L, V130D, and D47Y) showed that the a-helices decreased more than that of wild-type SEDL. The F83S (stop) mutant might suggest a large conformational change as the mutant V130D. In order to visualize conformational changes in mutated structures, we used molecular modeling techniques minimizing the total energy. These results could provide the biological characterization and conformational information of the SEDL mutants and suggest the clinical severity of the disorder among human SEDL patients

    EPR and X-ray Crystallographic Characterization of the Product-Bound Form of the Mn\u3csup\u3eII\u3c/sup\u3e-Loaded Methionyl Aminopeptidase from \u3cem\u3ePyrococcus furiosus\u3c/em\u3e

    Get PDF
    Methionine aminopeptidases (MetAPs) are ubiquitous metallohydrolases that remove the N-terminal methionine from nascent polypeptide chains. Although various crystal structures of MetAP in the presence of inhibitors have been solved, the structural aspects of the product-bound step has received little attention. Both perpendicular- and parallel-mode electron paramagnetic resonance (EPR) spectra were recorded for the MnII-loaded forms of the type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs in the presence of the reaction product l-methionine (l-Met). In general, similar EPR features were observed for both [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met. The observed perpendicular-mode EPR spectra consisted of a six-line hyperfine pattern at g = 2.03 (A = 8.8 mT) with less intense signals with eleven-line splitting at g = 2.4 and 1.7 (A = 4.4 mT). The former feature results from mononuclear, magnetically isolated MnII ions and this signal are 3-fold more intense in the [MnMn(PfMetAP-II)]−l-Met EPR spectrum than in the [MnMn(EcMetAP-I)]−l-Met spectrum. Inspection of the EPR spectra of both [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met at 40 K in the parallel mode reveals that the [Mn(EcMetAP-I)]−l-Met spectrum exhibits a well-resolved hyperfine split pattern at g = 7.6 with a hyperfine splitting constant of A = 4.4 mT. These data suggest the presence of a magnetically coupled dinuclear MnII center. On the other hand, a similar feature was not observed for the [MnMn(PfMetAP-II)]−l-Met complex. Therefore, the EPR data suggest that l-Met binds to [MnMn(EcMetAP-I)] differently than [MnMn(PfMetAP-II)]. To confirm these data, the X-ray crystal structure of [MnMn(PfMetAP-II)]−l-Met was solved to 2.3 Å resolution. Both Mn1 and Mn2 reside in a distorted trigonal bipyramidal geometry, but the bridging water molecule, observed in the [CoCo(PfMetAP-II)] structure, is absent. Therefore, l-Met binding displaces this water molecule, but the carboxylate oxygen atom of l-Met does not bridge between the two MnII ions. Instead, a single carboxylate oxygen atom of l-Met interacts with only Mn1, while the N-terminal amine nitrogen atom binds to M2. This l-Met binding mode is different from that observed for l-Met binding [CoCo(EcMetAP-I)]. Therefore, the catalytic mechanisms of type-I MetAPs may differ somewhat from type-II enzymes when a dinuclear metalloactive site is present

    A Case of Idiopathic Adulthood Ductopenia

    Get PDF
    Idiopathic adulthood ductopenia (IAD) is a chronic cholestatic liver disease of unknown etiology characterized by adult onset, an absence of autoantibodies, inflammatory bowel disease, and a loss of interlobular bile ducts. In the present report, a case fulfilling the IAD criteria is described. A 19-year-old man was admitted to the hospital for persistent elevation of transaminases and alkaline phosphatase without clinical symptoms. Viral hepatitis markers and autoantibodies were absent. The patient had a normal extrahepatic biliary tree and had no evidence of inflammatory bowel disease. A liver biopsy specimen showed absence of interlobular bile ducts from 58% of the portal tracts. He was diagnosed with IAD and was treated with ursodeoxycholic acid

    Noninvasive predictors of nonalcoholic steatohepatitis in Korean patients with histologically proven nonalcoholic fatty liver disease

    Get PDF
    Background/AimsThe aims of this study were (1) to identify the useful clinical parameters of noninvasive approach for distinguishing nonalcoholic steatohepatitis (NASH) from nonalcoholic fatty liver disease (NAFLD), and (2) to determine whether the levels of the identified parameters are correlated with the severity of liver injury in patients with NASH.MethodsOne hundred and eight consecutive patients with biopsy-proven NAFLD (age, 39.8±13.5 years, mean±SD; males, 67.6%) were prospectively enrolled from 10 participating centers across Korea.ResultsAccording to the original criteria for NAFLD subtypes, 67 patients (62.0%) had NASH (defined as steatosis with hepatocellular ballooning and/or Mallory-Denk bodies or fibrosis ≥2). Among those with NAFLD subtype 3 or 4, none had an NAFLD histologic activity score (NAS) below 3 points, 40.3% had a score of 3 or 4 points, and 59.7% had a score >4 points. Fragmented cytokeratin-18 (CK-18) levels were positively correlated with NAS (r=0.401), as well as NAS components such as lobular inflammation (r=0.387) and ballooning (r=0.231). Fragmented CK-18 was also correlated with aspartate aminotransferase (r=0.609), alanine aminotransferase (r=0.588), serum ferritin (r=0.432), and the fibrosis stage (r=0.314). A fragmented CK-18 cutoff level of 235.5 U/L yielded sensitivity, specificity, and positive and negative predictive values of 69.0%, 64.9%, 75.5% (95% CI 62.4-85.1), and 57.1% (95% CI 42.2-70.9), respectively, for the diagnosis of NASH.ConclusionsSerum fragmented CK-18 levels can be used to distinguish between NASH and NAFL. Further evaluation is required to determine whether the combined measurement of serum CK-18 and ferritin levels improves the diagnostic performance of this distinction

    Inhalation toxicity of humidifier disinfectants as a risk factor of children’s interstitial lung disease in Korea: a case-control study

    Get PDF
    Abstract Background: The occurrence of numerous cases of interstitial lung disease in children (chILD) every spring in Korea starting in 2006 raised suspicion about a causal relationship with the use of humidifier disinfectants (HDs). The aim of this study was to evaluate the association between HD use and the risk of chILD

    Understand KRAS and the Quest for Anti-Cancer Drugs

    No full text
    The KRAS oncogene is mutated in approximately ~30% of human cancers, and the targeting of KRAS has long been highlighted in many studies. Nevertheless, attempts to target KRAS directly have been ineffective. This review provides an overview of the structure of KRAS and its characteristic signaling pathways. Additionally, we examine the problems associated with currently available KRAS inhibitors and discuss promising avenues for drug development

    Molecular Characteristics of Amyloid Precursor Protein (APP) and Its Effects in Cancer

    No full text
    Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer’s disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer

    Structure and Activities of the NS1 Influenza Protein and Progress in the Development of Small-Molecule Drugs

    No full text
    The influenza virus causes human disease on a global scale and significant morbidity and mortality. The existing vaccination regime remains vulnerable to antigenic drift, and more seriously, a small number of viral mutations could lead to drug resistance. Therefore, the development of a new additional therapeutic small molecule-based anti-influenza virus is urgently required. The NS1 influenza gene plays a pivotal role in the suppression of host antiviral responses, especially by inhibiting interferon (IFN) production and the activities of antiviral proteins, such as dsRNA-dependent serine/threonine-protein kinase R (PKR) and 2′-5′-oligoadenylate synthetase (OAS)/RNase L. NS1 also modulates important aspects of viral RNA replication, viral protein synthesis, and virus replication cycle. Taken together, small molecules that target NS1 are believed to offer a means of developing new anti-influenza drugs
    corecore