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Abstract 

 

Methionine aminopeptidases (MetAPs) are ubiquitous metallohydrolases that remove the N-terminal 

methionine from nascent polypeptide chains. Although various crystal structures of MetAP in the presence of 

inhibitors have been solved, the structural aspects of the product-bound step has received little attention. Both 

perpendicular- and parallel-mode electron paramagnetic resonance (EPR) spectra were recorded for the MnII-

loaded forms of the type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs in the presence of the 

reaction product l-methionine (l-Met). In general, similar EPR features were observed for both [MnMn(EcMetAP-

I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met. The observed perpendicular-mode EPR spectra consisted of a six-line 

hyperfine pattern at g = 2.03 (A = 8.8 mT) with less intense signals with eleven-line splitting at g = 2.4 and 1.7 

(A = 4.4 mT). The former feature results from mononuclear, magnetically isolated MnII ions and this signal are 3-



fold more intense in the [MnMn(PfMetAP-II)]−l-Met EPR spectrum than in the [MnMn(EcMetAP-I)]−l-Met 

spectrum. Inspection of the EPR spectra of both [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met at 

40 K in the parallel mode reveals that the [Mn(EcMetAP-I)]−l-Met spectrum exhibits a well-resolved hyperfine 

split pattern at g = 7.6 with a hyperfine splitting constant of A = 4.4 mT. These data suggest the presence of a 

magnetically coupled dinuclear MnII center. On the other hand, a similar feature was not observed for the 

[MnMn(PfMetAP-II)]−l-Met complex. Therefore, the EPR data suggest that l-Met binds to [MnMn(EcMetAP-I)] 

differently than [MnMn(PfMetAP-II)]. To confirm these data, the X-ray crystal structure of [MnMn(PfMetAP-

II)]−l-Met was solved to 2.3 Å resolution. Both Mn1 and Mn2 reside in a distorted trigonal bipyramidal geometry, 

but the bridging water molecule, observed in the [CoCo(PfMetAP-II)] structure, is absent. Therefore, l-Met 

binding displaces this water molecule, but the carboxylate oxygen atom of l-Met does not bridge between the 

two MnII ions. Instead, a single carboxylate oxygen atom of l-Met interacts with only Mn1, while the N-terminal 

amine nitrogen atom binds to M2. This l-Met binding mode is different from that observed for l-Met binding 

[CoCo(EcMetAP-I)]. Therefore, the catalytic mechanisms of type-I MetAPs may differ somewhat from type-II 

enzymes when a dinuclear metalloactive site is present. 

 

Methionine aminopeptidases (MetAPs) are ubiquitous enzymes that are responsible for the removal of N-

terminal methionine residues from newly synthesized polypeptide chains (1−5). While the rationale for the 

removal of the initiator methionine remains unclear, several explanations have been proposed (4). Some involve 

the facilitation of further processing after excision of the N-terminal group such as removal of signal sequences if 

present, proteolytic cleavage to generate shorter peptides, and/or the covalent attachment of residues and 

blocking groups such as acetyl and myristoyl groups (3). MetAPs are, therefore, one of the key cellular enzymes 

involved in protein maturation. Deletion of the gene encoding for MetAPs has been shown to be lethal 

to Escherichia coli, Saccharomyces cerevisiae, and Salmonella typhimurium, indicating that the activity of MetAP 

is essential for cell growth and survival (6−8). The importance of understanding the catalytic mechanism of 

MetAPs is underscored by the recent observation that MetAPs are the target for antiangiogenesis drugs, one of 

which is in third stage clinical trials (9, 10). Thus, the design of mechanism-based inhibitors is critically important 

in the development of drugs that prevent tumor vasculature formation, growth, and proliferation. 

On the basis of sequence alignment and X-ray crystallography data, MetAPs have been divided into two classes 

(types I and II), distinguished by an extra 62 amino acid helical subdomain inserted within the C-terminal domain 

in type-II enzymes, of unknown function (11). Bacteria have only type-I MetAPs, while archaea contain only type 

II. In contrast, eukaryotes contain both type-I and type-II MetAPs (1). The type-I MetAPs from E. coli (EcMetAP-

I)1 and Staphylococcus aureus (SaMetAP-I) and the type-II MetAPs from Pyrococcus furious (PfMetAP-II) 

and Homo sapiens (HsMetAP-II) have been crystallographically characterized and shown to contain homologous 

catalytic domains that contain two metal ions coordinated by strictly conserved residues:  two glutamates, two 

aspartates, a histidine, and two water molecules (12−16). Although crystallographic analyses together with 

sequence comparisons initially led to the supposition that all MetAPs were cobalt-dependent dinuclear 

hydrolases, recent work has questioned the validity of this assumption (17−20). It has been shown 

that EcMetAP-I and PfMetAP-II can be fully activated by a single equivalent of CoII, even though both enzymes 

can incorporate 2 equiv of CoII (19, 20). However, the two metal-binding affinities differ by over 3 orders of 

magnitude, suggesting that MetAPs are mononuclear hydrolases in vivo (19). The higher affinity, catalytically 

relevant divalent metal-binding site has been assigned to the histidine-containing site based on 1H NMR (19) and 

EXAFS (21) data. 

MetAPs can be activated to different degrees by several first-row divalent transition-metal ions, which has 

raised the question regarding the identity of the physiologically relevant metal. Walker et al. suggested that 

ZnII is the physiologically relevant metal for the yeast MetAP-I because the enzyme was maximally activated with 



zinc in the presence of 1 mM EDTA and glutathione (17). In contrast, in vitro activity assays and whole-cell metal 

analyses by D'souza et al. (18) suggested that FeII or MnII is the in vivo metal ion for EcMetAP-I. Iron has also 

been shown to maximally activate PfMetAP-II and provides a particularly active enzyme form at 80 °C, the 

physiologically relevant temperature for P. furious (20). This observation suggests a physiological role for 

FeII in PfMetAP-II. In more recent studies, the in vivo inhibition of HsMetAP-II by two competitive inhibitors, one 

of which is specific for MnII-loaded HsMetAP-II, was characterized and these data suggested that MnII is the 

active-site metal in vivo (22). 

Because recent studies have highlighted manganese as a plausible candidate for the in vivo divalent metal ion 

(22), it is important to provide insight into the mode of MnII binding to the active site of both type-I and type-II 

MetAPs. In an effort to gain structural and mechanistic information on the MnII-loaded forms of MetAPs, 

electron paramagnetic resonance (EPR) spectra of [MnMn(PfMetAP-II)] and [MnMn(EcMetAP-I)] were recorded 

in the absence and presence of the product of hydrolysis, l-methionine (l-Met). In addition, the X-ray crystal 

structure of the [MnMn(PfMetAP-II)]−l-Met complex was solved to 2.3 Å resolution. Differences between the 

binding mode of l-Met to [MnMn(PfMetAP-II)] versus both [MnMn(EcMetAP-I)] and [CoCo(EcMetAP-I)] and their 

mechanistic implications are discussed. 

Materials and Methods 

Protein Expression and Purification.  
Recombinant EcMetAP-I (Arg175Gln) was expressed and purified as previously described (18). Purified EcMetAP-

I exhibited a single band on SDS−PAGE and a single symmetrical peak in matrix-assisted laser desorption 

ionization−time-of-flight (MALDI−TOF) mass spectrometric analysis indicating Mr = 29 630 ± 10. Protein 

concentrations for all experiments were estimated from the absorbance at 280 nm using an extinction 

coefficient of 16 450 M-1 cm-1. Apo-EcMetAP-I samples were exchanged into 25 mM [4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid] (HEPES) at pH 7.5, containing 150 mM KCl (Centricon-10, Millipore Corp.). 

PfMetAP-II was purified as previously reported (20). Purified PfMetAP-II exhibited a single band on SDS−PAGE 

with a Mr of 33 000. Protein concentrations were estimated from the absorbance at 280 nm using an extinction 

coefficient of 21 650 M-1 cm-1. Metal-free PfMetAP-II was prepared by concentrating the as-purified PfMetAP-II 

to a volume of ∼5 mL after which EDTA was added to a final concentration of 10 mM. The resulting protein 

solution was dialyzed against 25 mM HEPES (2 L, pH 7.5) containing 10 mM EDTA and 150 mM KCl at 4 °C for 2 

days with two buffer changes per day. The protein solution was then dialyzed against chelexed (Chelex-100 

Column) 25 mM HEPES buffer (2L, pH 7.5) containing 150 mM KCl for 3 days against two buffer changes per day. 

The resulting PfMetAP-II was inactive and was found to contain no detectable metal ions via inductively coupled 

plasma−atomic emission spectrometry (ICP−AES). 

Enzymatic Assay.  
EcMetAP-I was assayed for catalytic activity with the tetrapeptide MGMM as the substrate (8 mM) using a high-

performance liquid chromatography (HPLC) method as previously described (19). This method is based on the 

spectrophotometric quantitation of the reaction product GMM following separation on a C8 HPLC column 

(Phenomenex, Luna; 5 m, 4.6 × 25 cm). The kinetic parameter v (velocity) was determined at pH 7.5 by 

quantifying the tripeptide GMM at 215 nm in triplicate. The inhibition constant (Ki) for l-Met (from Sigma, St. 

Luis, MO) was obtained by measuring the activity of 1 μM of MnII-loaded PfMetAP-II with 1−30 mM MGMM in 

the presence of 0−200 mM l-Met. These data were fit to the nonlinear competitive inhibition equation, using 

Sigma Plot Software. 



Spectroscopic Measurements.  
Electronic absorption spectra were recorded on a Hewlett−Packard (8453) diode array spectrophotometer. Low-

temperature EPR spectroscopy was performed using a Bruker ESP-300E spectrometer equipped with an ER 4116 

DM dual mode X-band cavity and Oxford Instruments ESR-900 helium flow cryostat. Background spectra, 

recorded on a buffer sample, were aligned with and subtracted from all experimental spectra. EPR spectra were 

recorded at microwave frequencies of ∼9.65 GHz, and precise microwave frequencies were recorded for 

individual spectra to ensure precise g alignment. All spectra were recorded at 100 kHz modulation frequency, 

while other EPR running parameters are specified in the figure captions for individual samples. The apo-

EcMetAP-I and PfMetAP-II enzymes were incubated with substoichiometric amounts of MnII to suppress the 

isotropic signal from [Mn(H2O)6]2+ and also to observe signals from the MnII-bound forms of MetAPs. Computer 

simulations were performed using XSophe (Bruker Biospin) (23). 

Crystallization, Data Collection, and Refinement.  
[MnMn(PfMetAP-II)]−l-Met was crystallized by sitting drop vapor diffusion at 21 °C (12). The crystals, of an 

average size of 0.3 × 0.3 × 0.4 mm3, were obtained within 30 days by mixing equal volumes (3 μL each) of 20 mg 

mL-1 of the [MnMn(PfMetAP-II)] protein solution (containing 30 mM l-Met in 20 mM potassium acetate buffer at 

pH 4.5) and the reservoir solution containing 20% ethanol in 0.1 M Tris buffer at pH 8.5. 

The [MnMn(PfMetAP-II)]−l-Met crystals belong to space group P64 with unit cell parameters a = b = 112.01 Å 

and c = 122.96 Å. Prior to data collection, the crystals were equilibrated for 5 min in a mother liquor solution 

containing 30% glycerol as a cryoprotectant. The crystals were flash-cooled in liquid nitrogen on rayon loops, 

and data collection was performed under a continuous nitrogen stream at ∼100 K at the Stanford Synchrotron 

Radiation Laboratory (SSRL) beamline 9-1 (λ = 1.5418 Å). Reflections were integrated using MOSFLM (24) and 

scaled with SCALA of the CCP4 suite of programs (25) (Table 1). The 208 524 total reflections measured for 

[MnMn(PfMetAP-II)]−l-Met were reduced to 38 795 unique reflections representing 99.7% of complete data to 

2.3 Å resolution (Table 1). 

Table 1:  Data and Refinement Statistics of the [MnMn(PfMetAP-II)]−l-Met Structurea 

crystals PfMetAP-II 

space group P64 

cell dimensions a = 112.01 Å 

  b = 112.01 Å 

  c = 122.96 Å 

resolution (Å) 30.0−2.30 

completeness (%) (last cell) 99.7 (99.9) 

observed reflections 208 524 

unique reflections 38 795 

I/σ 4.4 (2.6) 

Rmerge (%)b 11.0 (33.5) 

protein nonhydrogen atoms 4620 

solvent molecules 325 

Mn ions 4.0 

Rcryst (%)c 21.5 

Rfree (%)c 25.2 

bond lengths (Å) 0.011 

bond angles (deg) 2.2 

Ramachandran analysis   

most favored regions (%) 92.2 



additional allowed regions 7.4 

generously allowed regions 0.4 

disallowed regions 0.0 
a Numbers in parentheses indicate values for the highest resolution bin.b Rmerge = ∑hkl∑i|Ii − 〈I〉/∑hkl∑i|〈I〉|, 
where Ii is the intensity for the ith measurement of an equivalent reflection with indices h, k, and l.c Rcryst = 
∑hkl||Fobs| − |Fcalc||/∑hkl|Fobs|, where Fobs denotes the observed structure-factor amplitude and Fcalc denotes the 
structure-factor amplitude calculated from the model; 5% of the reflections were used to calculate bRfree. 
 

The structure was determined by the molecular replacement method with AMORE (26, 27) using the 

[CoCo(PfMetAP-II)] structure (PDB entry 1XGM) (12) as a search model. The search was carried out with the data 

between 12.0 and 5.0 Å, and two molecules had a correlation coefficient of 70.2 (R = 31.8%). Solvent flattening 

and 2-fold noncrystallographic averaging were employed to improve the quality of the electron-density map 

(25). The model was improved through iterative model building using the program O (28). During refinement, a 

bulk solvent correction allowed the inclusion of all low-resolution reflections and ∼5% of the data were 

randomly selected for cross validation (29). Model bias was removed for the incorporation of Rfree calculation for 

cross validation by randomization using the simulated annealing routine of CNS (29) with an annealing 

temperature of 4000 K. Initial-position refinement of the rigid-body-refined model using 30.0−2.3 Å for the 

[MnMn(PfMetAP-II)]−l-Met data followed by group B-factor refinement dropped the Rfree to 31.9% and Rcryst to 

28.7%. During the majority of refinement, noncrystallographic symmetry restraints were applied to restrict 

differences in symmetrically equivalent atoms. These restraints were released in the latter stages of refinement. 

The final model has been refined to the full-resolution range of data (Table 1) to a current Rfree of 25.2% 

and Rcryst of 21.5%. The crystal structure of [MnMn(PfMetAP-II)]−l-Met consists of all 590 possible protein 

residues, 4 Mn ions, and 325 water molecules per symmetry unit cell (Table 2). PROCHECK (30) analysis indicates 

that the model exhibits good geometry with a root-mean-square deviation from ideal bond lengths and angels 

of 0.011 Å and 2.20° and with all residues of the model lying in the allowed regions of the Ramachandran plot 

(Table 1). 

Table 2:  Selected Averaged Distances for the Active Site of [MnMn(PfMetAP-II)]−l-Met and the Analogous 

Distances for [CoCo(EcMetAP-I]−l-Meta 

  A B average     

Mn(1)−Mn(2) 3.34 3.45 3.4 Co(1)−Co(2) 3.3 

Mn(1)−Asp93(Oδ2) 1.94 2.04 2.0 Co(1)−Asp108(Oδ1) 2.0 

Mn(1)−His153(Nε2) 2.13 2.13 2.1 Co(1)−His171(Nε2) 2.1 

Mn(1)−Glu187(Oε2) 2.12 2.04 2.1 Co(1)−Glu204(Oε2) 2.1 

Mn(1)−Glu280(Oε2) 1.96 2.00 2.0 Co(1)−Glu235(Oε1) 2.0 

Mn(2)−Asp82(Oδ1) 2.13 2.08 2.1 Co(2)−Asp97(Oδ1) 2.2 

Mn(2)−Asp82(Oδ2) 2.00 2.08 2.0 Co(2)−Asp97(Oδ2) 2.3 

Mn(2)−Asp93(Oδ1) 2.05 2.05 2.1 Co(2)−Asp93(Oδ2) 2.1 

Mn(2)− Glu280(Oε2) 2.00 2.02 2.0 Co(2)− Glu235(Oε2) 2.2 

Mn(2)−Met(N) 2.09 2.07 2.1 Co(2)−Met(N) 2.2 

Mn(1)−Met(O) 1.91 1.93 1.9 Co(1)−Met(O) 2.0 

Mn(2)−Met(O) 2.71 2.82 2.8 Co(2)−Met(O) 2.2 
a The distances for each molecule are reported separately (labeled A and B) as well as the average of the two 
(rounded to the tenths place to be more in line with the anticipated coordinate for a structure at the current 
resolution). 
 



Results 

Inhibition of [Mn(PfMetAP-II)] by l-Met.  
The specific activity of MnII-loaded PfMetAP-II was determined at nine substrate concentrations (1−30 mM 

MGMM) in the presence of 0−200 mM l-Met. These data were plotted as activity versus substrate concentration 

and fit to a competitive inhibition equation using Sigma Plot software. l-Met was found to be a weak competitive 

inhibitor of MnII-loaded PfMetAP-II with a Ki value of 150 ± 30 mM. 

Electronic Absorption Spectroscopy.  
The electronic absorption spectrum of CoII-loaded Pf MetAP-II reveals three maxima with λmax values of 525 nm 

(ε525 = 72 M-1 cm-1), 562 nm (ε562 = 100 M-1 cm-1), and 590 nm (ε590 = 93 M-1 cm-1) (Figure 1A). These data are in 

good agreement with previously published results (20). Upon the addition of 20 mM l-Met to CoII-

loaded PfMetAP-II, the intensity of the observed peaks decreased by approximately 25% (Figure 1B). The molar 

absorptivities further decreased after the addition of l-Met to a concentration of 120 mM, but the λmax did not 

change (Figure 1C). The observed λmax values and their corresponding molar absorptivities are consistent with 

the active-site CoII ion in the l-Met complex residing in a distorted pentacoordinate environment. 

 
Figure 1 Electronic absorption spectrum of (A) [Co(PfMetAP-II)], (B) [Co(PfMetAP-II)] and 20 mM l-Met, and (C) 
[Co(PfMetAP-II)] and 120 mM l-Met. All electronic absorption spectra were recorded with 1 mM (PfMetAP-II) 
with 2 equiv of CoII added (25 mM HEPES at pH 7.5 and 150 mM KCl). 
 

EPR Spectra of [MnMn(PfMetAP-II)] and [MnMn(EcMetAP-I)].  
The EPR spectra of [MnMn(PfMetAP-II)] and [MnMn(EcMetAP-I)], recorded at 10 K, are essentially 

indistinguishable (traces A and C of Figure 2) and are characteristic of mononuclear MnII, with geff = 2.03 

and AI=5/2(55Mn) = 9 mT (31). Also evident in the spectra is a six-line pattern centered at g = 4.15 (166 mT) 

with Aav(55Mn) ∼ 9.0 mT. This signal is often attributed to Δms = 2 transitions that are formally forbidden for 

systems of high symmetry (32−34). Additional features were also observed at g = 5.1 (134 mT), g = 2.4 (290 mT), 

and g = 1.6 (434 mT); these features were weak and poorly resolved at 10 K (traces A and C of Figure 2) but 

increased in intensity at higher temperatures (traces B and D of Figure 2). Variable temperature studies (not 

shown) indicated a Boltzmann-like temperature dependence for these features, suggestive of excitation of 

higher energy doublets in a spin ladder, and second derivative EPR spectra (insets on trace B of Figure 2) 

identified the multiline structure of these features with a splitting of 0.45 mT. 



 
Figure 2 EPR spectra of [MnMn(EcMetAP-I)] (A and B) and [MnMn(PfMetAP-II)] (C and D). Spectra were recorded 
with 0.4 mT modulation amplitude with microwave powers and temperatures, respectively, of 1 mW and 10 K 
(A), 10 mW and 20 K (B), 0.1 mW and 10 K (C), and 10 mW and 20 K (D). The insets above trace B are second 
derivatives of B (∂2χ/∂H2). 
 

Parallel-mode (B0||B1) EPR spectra of [MnMn(PfMetAP-II)] and [MnMn(EcMetAP-I)] (Figure 3) were recorded at 

various temperatures. At 5 K, the signals are dominated by an intense near-zero-field absorption at g ≥ 21 

(traces A and B of Figure 3). These signals are likely to originate from one or more inter-Kramers' doublet fine 

structure transitions for a mononuclear MnII center. Similar signals were observed for other MnII enzymes such 

as bacteriophage λ protein phosphatase and arginase (35−38). The Δms = 2 half-field transitions are also 

prominent, and there is some “bleed over” of the g ∼ 2 six-line pattern. Thus, at 5 K, all of the spectral features 

in the parallel-mode signal can be attributed to mononuclear MnII. However, at higher temperatures (e.g., 40 K; 

traces C and D of Figure 3), additional features become apparent. There is a minimum feature at geff = 4.2 (165 

mT), which is suggestive of an S = 1 spin system, a peak at geff = 8.0 (85 mT), which suggests an S = 2 spin system, 

a shoulder at geff = 12 (58 mT), and a broad feature extending out of the zero field that exhibits a minimum 

at geff = 18 that could arise from either or both an S = 4 or 5 spin system (39). These features displayed complex, 

Boltzmann-like temperature dependence, and although the signals could not be deconvoluted because of 

overlap in both the spectral and temperature domains, their resonance positions and temperature 

dependencies are consistent with them being due to non-Kramers' doublet transitions in an S = 0, 1, ..., 5 spin 

ladder (40, 41). This, in turn, is completely consistent with two antiferromagnetically coupled MnII ions 

exhibiting modest exchange coupling (J ≪ 50 cm-1). Strong support for this assignment comes from a clear 

hyperfine pattern on the g = 8 feature with a hyperfine splitting of 4.4 mT (32, 38). 

 



Figure 3 Comparison of high- and low-temperature parallel-mode spectra of [MnMn(PfMetAP-II)] and 
[MnMn(EcMetAP-I)]. Parallel-mode spectra of 1 mM [MnMn(PfMetAP-II)] recorded at (A) 4.85 and (C) 40 K. 
Parallel-mode spectra of 1 mM [Mn(EcMetAP-I)] recorded at (B) 5 and (D) 40 K. The applied EPR parameters 
were as follow:  9.39 GHz, spectrometer frequency; 20 mW, microwave power; 0.4 mT, modulation amplitude; 
and 2 mT s-1, sweep rate. 
 

EPR Spectra of [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met.  
Parallel- and perpendicular-mode spectra were recorded for both [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)] 

in the presence of the reaction product, l-Met. Figure 4 shows the perpendicular-mode spectra of 

[MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met at 40 K. Clearly, both spectra contain the same 

spectral features as [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)], although the intensities of the central six-line 

pattern, because of mononuclear MnII, is markedly decreased. In addition, the hyperfine patterns observed in 

the spectra of naked [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)] (Figure 2B) are much better resolved in the l-

Met-bound species and are clearly visible in the first derivative (∂χ/∂H) traces (Figure 4). The observed hyperfine 

pattern at 290 mT and a less intense pattern at 408 mT consists of eleven lines with approximate relative 

intensities of 1:2:3:4:5:6:5:4:3:2:1 and a hyperfine coupling constant of ∼4.4 mT. This hyperfine pattern is 

diagnostic for exchanged coupled MnII−MnII centers (32, 38, 39). The parallel-mode spectra of [MnMn(EcMetAP-

I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met (Figure 5) are essentially indistinguishable from the spectra of the 

unbound forms of [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)], except that, as for the perpendicular-mode 

spectra, the hyperfine patterns are better resolved in the l-Met-bound species (Figure 6). 

 
Figure 4 EPR spectrum of 1 mM [MnMn(EcMetAP-I)]−l-Met (A) and [Mn(PfMetAP-II)]−l-Met (B) complexes. 
These data were collected at 40 K using 20 mW, microwave power; 0.4 mT, modulation amplitude; and 2 mT s-1, 
sweep rate. High-resolution scans of the region 220−320 mT at 40 K are shown as a “blow up” above each 
spectrum. Inset, comparison of the g = 2 region. The signal at g = 2.03 of [Mn(EcMetAP-I)]−l-Met was multiplied 
by 3. The EPR parameters were 20 mW, microwave power; 1 mT, modulation amplitude; and 2 mT s-1, scan rate. 



 
Figure 5 Parallel-mode spectra of 1 mM [MnMn(PfMetAP-II)]−l-Met at (A) 4.85 and (C) 40 K and 1 mM 
[MnMn(EcMetAP-I)]−l-Met at (B) 5 and (D) 40 K. The applied EPR parameters were as follow:  9.39 GHz, 
spectrometer frequency; 20 mW, microwave power; 0.4 mT, modulation amplitude; and 2 mT s-1, sweep rate. 

 
Figure 6 High resolution in parallel-mode EPR spectra of 1 mM [MnMn(PfMetAP-II)]−l-Met recorded at (A) 40 
and (B) 70 K and 1 mM [MnMn(EcMetAP-I)]−l-Met recorded at (C) 40 and (D) 70 K. EPR-recording conditions 
were as follows:  9.39 GHz, spectrometer frequency; 20 mW, microwave power; 1 mT, modulation amplitude; 
and 2 mT s-1, scan rate. 
 

X-ray Crystal Structure of [MnMn(PfMetAP-II)] with l-Met.  
The X-ray crystal structure of [MnMn(PfMetAP-II)] complexed with the reaction product l-Met was solved to 2.3 

Å resolution. The comparison of the average B factor for the l-Met molecules (28.5 Å2) and manganese ions (26.4 

Å2) in the two MnMn(PfMetAP-II) molecules is lower than that of the average B factor for all other non-

hydrogen atoms (34.5 Å2), indicating that the l-Met molecules and metal ions are present at high occupancy. The 

two manganese atoms are 3.4 Å apart compared to 3.3 Å in the [CoCo(PfMetAP-II)] structure (Table 2 and Figure 

7). The amino acid residues coordinated to the dinuclear MnII cluster are identical to those in the dinuclear 

CoII structure with only minor perturbations in bond lengths and angles (Table 2 and Figure 7). Both Mn1 and 

Mn2 reside in a distorted trigonal bipyramidal geometry, and the lack of observable electron density between 

the two MnII ions suggests that the bridging water/hydroxide observed in the wild-type structure of 

[CoCo(PfMetAP-II)] has been replaced by l-Met. l-Met binds to the dinuclear MnII active site, where one of the 

carboxylate oxygen atoms binds to Mn1, while the N-terminal amine nitrogen atom binds to Mn2. 



 
Figure 7 Active sites of (A) [CoCo(PfMetAP-II)] (PDB entry 1XGM), (B) [CoCo(EcMetAP-I)] complex with l-Met 
(PDB entry 1C21), and (C) [MnMn(PfMetAP-II)]−l-Met. Color scheme for atoms are carbon, gray; oxygen, red; 
nitrogen, blue; sulfur, yellow; cobalt, magenta; and manganese, orange. 
 

Discussion 
Recently, it was reported that both EcMetAP-I and PfMetAP-II contain a high- and low-affinity metal-binding site 

and that each enzyme is maximally active when only one metal-binding site is occupied (18−20, 42). On the basis 

of the observed catalytic activity and the metal-binding constants for both sites, both EcMetAP-I and PfMetAP-II 

were proposed to function, in vivo, as a mononuclear enzyme. Additionally, the high-affinity metal-binding site 

was assigned as the histidine-containing site and, therefore, is the catalytically relevant metal-binding site (19, 

21). Recently, the human cytosolic AMPP, which has an identical active ligand to that of both EcMetAP-I 

and PfMetAP-II, was shown to be maximally stimulated by MnII ions (43). Moreover, this study also showed that 

only one MnII ion was required for full activity, providing the first evidence that AMPPs are also mononuclear 

enzymes, similar to MetAPs. To gain insight into the MnII-binding properties and the product-bound forms of 

both type-I and type-II MetAPs when MnII is the metal cofactor, we have recorded EPR spectra of the MnII-

loaded forms of both enzymes. 

The X-band EPR spectra of both [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)] at 4 and 40 K exhibit a hyperfine 

split six-line signal centered at g = 2 and with AI=5/2(55Mn) = 9 mT, characteristic of mononuclear MnII and 

consistent with MnII ions being coordinated by oxygen- and nitrogen-containing ligands (32). In addition to the 

mononuclear MnII signal, the parallel- and perpendicular-mode EPR spectra of both the naked and l-Met-bound 

forms of [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)] contain features that can only rationally be assigned to 

spin-coupled MnII ions and indicate that a polynuclear MnII center can be formed in the enzyme. X-ray 

crystallography shows that the enzyme can indeed form a dinuclear MnII center, and the EPR data are entirely 

consistent with a proportion of the sample being a dinuclear MnII system. Attempts were made to extract spin 

Hamiltonian parameters through computer simulations. Matrix diagonalization approaches have been successful 



for both mononuclear MnII (44) and dinuclear MnII (39). In the present case, both the spectral and temperature-

dependence resolution were insufficient to fully deconvolute spectral features. Thus, an accurate value for the 

exchange coupling could not be obtained, and this parameter remained a variable in the simulations. The lack of 

single-crystal data also dictated that the geometric relationships between the g tensors of the MnII ions and the 

inter-MnII vector were unknown. An additional complication arises from the contribution of interdoublet 

forbidden transitions, which are nonnegligible at the X band and require that simulations take into account all of 

the S = 0, 1, 2, ..., 5 spin states simultaneously. The time required for each simulation of the dinuclear 

component of the spectra of [MnMn(EcMetAP-I)] and [MnMn(PfMetAP-II)] is, therefore, measured in days 

(weeks, if the hyperfine interaction is included) rather than minutes or hours. Because of the large numbers of 

variables, exact line-shape simulations were not obtained but systematic variation of certain parameters was 

carried out based on temperature dependence, crystallographic data, and earlier studies. The simulations 

indicate an inter-MnII distance of 3.54 > r > 3.14 Å and thus provide support for the proposal that the EPR signal 

is indeed due to the crystallographically identified dinuclear MnII center. 

One of the steps within the proposed catalytic mechanism of MetAPs that has been largely overlooked is the 

structure of the product-bound form of the enzyme. Initially, the electronic absorption spectrum of 

[CoCo(PfMetAP-II)] was recorded both in the absence and presence of 120 mM l-Met. No change in the 

λmax values was observed; however, the molar absorptivities decreased, suggesting that l-Met does bind to the 

active-site CoII ions. The molar absorptivities of the [CoCo(PfMetAP-II)]−l-Met complex are consistent with 

CoII coordination numbers of five. The fact that the CoII coordination number remains the same upon l-Met 

binding suggests that l-Met displaces a labile CoII ligand, most likely a water/hydroxide. Conversely, the 

previously reported electronic absorption spectrum of the [CoCo(EcMetAP-I)]−l-Met complex indicated that the 

CoII coordination geometry changed from trigonal bipyramidal to distorted octahedral (13, 45). These data 

suggest that, unlike the CoII centers in PfMetAP-II, the CoII centers in EcMetAP-I expanded their coordination 

number. 

The fact that the electronic absorption data suggest that l-Met binds differently to type-I MetAPs than type-II 

MetAPs indicates that the two types of MetAPs may have some mechanistic differences. To further examine the 

product-bound form of both type-I and type-II MetAPs, EPR spectra of [MnMn(EcMetAP-I)] and 

[MnMn(PfMetAP-II)] in the presence of l-Met were recorded. Upon the addition of l-Met to [MnMn(EcMetAP-I)], 

the signals observed at g = 2.4 and 1.7 become more intense than in the resting enzyme and exhibit a well-

resolved eleven-line hyperfine splitting with A = 4.4 mT. These data are indicative of the formation of a dinuclear 

MnII−MnII center that is magnetically coupled (Figure 4) (32, 38). These data suggest that the two MnII centers 

are in close proximity within the MetAP active site, which allows magnetic coupling, or that there is a third 

bridging moiety that facilitates such coupling. Interestingly, l-Met appears to increase either the resolution or 

the relative amplitude of the multiline EPR signal because of dinuclear Mn, although it is unclear whether this is 

due to an l-Met-mediated decrease in the lability of one or more of the Mn ions or whether l-Met binding 

renders the multiline signal more easily observable because of the reduction of strains in the zero-field splitting 

parameters. Further, the higher resolution of the hyperfine lines in the l-Met-bound forms may be indicative of a 

reduction in the strain terms (either in g or in zero-field splitting parameters). The spectrum of 

[MnMn(PfMetAP-II)]−l-Met also exhibits signals at g = 2.4 and 1.7, but the hyperfine pattern is not well-resolved 

and is less pronounced, indicating that most of the MnII ions in the sample are uncoupled. Parallel-mode spectra 

of the [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met complexes were also recorded (Figure 5 and 

6). The parallel-mode spectrum of [MnMn(EcMetAP-I)]−l-Met exhibits a multiline signal at g = 7.6 with a 

hyperfine coupling constant of 4.4 mT, indicative of a dinuclear MnII−MnII that is antiferromagnetically coupled. 

This multiline pattern was not detected in the parallel-mode EPR spectrum of [MnMn(PfMetAP-II)]−l-Met. These 

data are consistent with the suggestion that the dinuclear MnII center in PfMetAP-II is not as magnetically 

coupled. 



 
Figure 8 Omit Fo − Fc electron-density map calculated to 2.3 Å resolution for the [MnMn(PfMetAP-II)]−l-Met 
complex (Table 1). Color scheme is same as in Figure 7. 

 
Figure 9 Proposed catalytic mechanism for a dinuclear MnIIMetAP enzyme. 
 

The observed EPR spectra of [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met contain signals with 

similar g values, and these signals exhibit similar temperature dependencies. These data suggest that the 

observed EPR signals originate from the same type of transition for both enzymes. The major difference arises 

from the relative intensities of the respective signals assigned to the mono- and dinuclear MnII species in 

[Mn(PfMetAP-II)]−l-Met and [MnMn(EcMetAP-I)]−l-Met (Figure 4). For example, the perpendicular-mode six-line 

signal at g = 2.03 (A = 8.8 mT) is 3-fold more intense in [MnMn(PfMetAP-II)]−l-Met and has been shown to be 

due to mononuclear MnII ions residing in octahedral or trigonal bipyramidal environments with oxygen or 

nitrogen ligands (32). Similarly, in the parallel mode, the six-line hyperfine pattern observed at g = 4.2 with A = 

8.8 is much better resolved and more pronounced in [MnMn(PfMetAP-II)]−l-Met than in [MnMn(EcMetAP-I)]−l-

Met. These data also suggest that the dinuclear MnII sites in type-I and type-II MetAPs in the presence of l-Met 

reside in different environments, which results in an increased amount of mononuclear MnII sites in the 

[MnMn(PfMetAP-II)]−l-Met complex. 

To further characterize the binding of l-Met to [MnMn(PfMetAP-II)], the enzyme was crystallized in the presence 

of l-Met and the X-ray crystal structure was determined to 2.3 Å resolution (Figures 7 and 8). Like all of the 

structures reported for MetAP−inhibitor complexes, the methionine group of l-Met resides in a well-defined 

hydrophobic pocket adjacent to the dinuclear MnII active site (13, 45). l-Met binding to [MnMn(PfMetAP-II)] 

results in a species in which the Mn−Mn distance is 3.4 Å; the Co−Co distance in uncomplexed [CoCo(EcMetAP-

I)] is 3.3 Å. In both species, the coordination number remains five, consistent with the electronic absorption data 

for [CoCo(EcMetAP-I)]. No active-site ligands are displaced upon l-Met binding except the water molecule, which 

bridges the two CoII ions in the wild-type structure. This bridging water molecule is displaced by one of the 

carboxylate oxygen atoms of l-Met. However, this carboxylate oxygen atom does not bridge between the two 

MnII ions but is terminal on M1, consistent with the EPR data obtained on the [MnMn(PfMetAP-II)]−l-Met 

complex. The N-terminal amine nitrogen of l-Met (N1) resides 2.1 Å from Mn2, indicating that it is bound to 



Mn2. In both enzymes, the active-site histidine [His161 of PfMetAP-II (3.1 Å) and His178 of EcMetAP-I (2.6 Å)] 

forms a hydrogen bond with the second oxygen of the carboxylate group of l-Met. 

The observed binding mode of l-Met to [MnMn(PfMetAP-II)] is different from that reported for the binding of l-

Met to the active site of [CoCo(EcMetAP-I)] (Figure 7) (45). In the [CoCo(EcMetAP-I)]−l-Met structure, the 

carboxylate oxygen atom of l-Met bridges between the two CoII centers, while the N-terminal amine nitrogen 

atom binds to Co2. The observed differences in the X-ray crystal structures of [CoCo(EcMetAP-I)]−l-Met and 

[MnMn(PfMetAP-II)]−l-Met likely account for the differences in magnetic coupling observed between 

[MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met. A bridging carboxylate oxygen, as observed in the 

[CoCo(EcMetAP-I)]−l-Met structure, will provide a stronger magnetic coupling interaction for the two MnII ions, 

with [MnMn(EcMetAP-I)]−l-Met accounting for the increased coupling between the two MnII ions in 

[MnMn(EcMetAP-I)]−l-Met. The lack of a single atom bridge in the [MnMn(PfMetAP-II)]−l-Met structure 

indicates that theses two MetAP enzymes bind the product differently. 

On the basis of the data presented herein as well as all of the kinetic, spectroscopic, and X-ray crystallographic 

data reported to date on MetAPs, a refined mechanism of action for EcMetAP-I and PfMetAP-II is proposed 

(Figure 9) (45). On the basis of the recently proposed mechanism for the leucine aminopeptidase 

from Aeromonas proteolytica (46, 47), the first step in catalysis for MetAPs is likely recognition of the N-terminal 

methionine side chain by the hydrophobic pocket adjacent to the metalloactive site (13, 45). Next, the peptide 

carbonyl oxygen coordinates to the histidine-ligated divalent metal ion. Hydrogen-bond formation between 

His79 and the backbone N−H scissile peptide bond has been proposed based on X-ray crystallographic results, 

thereby stabilizing the leaving group (13, 45). In addition, Glu204, which is also a ligand to the histidine-

containing divalent metal ion, was proposed to be a proton acceptor/donor in the catalytic process (13, 45). 

Because the N-terminal amine nitrogen of the substrate forms a hydrogen bond with D97 based on X-ray 

crystallography (13, 45), in the absence of a second metal ion, D97 likely assists to position the substrate 

properly in the active site for formation of the transition-state intermediate (48). In the presence of a dinuclear 

site, the second metal ion coordinates the N-terminal amine (13, 45). Next, the product-forming C−N bond-

breaking step occurs followed by the release of the cleaved peptide. On the basis of the date presented herein, 

the structure of the product-bound form of PfMetAP-II contains a single carboxylate oxygen atom bound to M1 

with the N-terminal amine bound to M2. Moreover, this l-Met-binding mode is different from that observed 

for l-Met binding [CoCo(EcMetAP-I)] (13, 45). Therefore, the catalytic mechanisms of type-I MetAPs may differ 

somewhat from type-II enzymes; however, in the absence of a second metal ion, the proposed mechanisms for 

type-I and type-II MetAPs would remain identical (48). The fact that the product, methionine, would be weakly 

bound to Mn-loaded PfMetAP-II under physiological conditions is evidenced by its weak Ki (150 mM). Finally, the 

active site adds two water molecules:  one that binds to the divalent metal ion and one that bridges between 

the coordinated water molecule and H178. 
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