3,777 research outputs found

    Mechanical behavior of seismic isolation bearings in earthquake-induced ultimate limit state

    Get PDF
    High-damping rubber bearings, lead rubber bearings, and natural rubber bearings are often used to improve the seismic capacity of seismic isolation bearings. We present the results of an extensive series of experimental tests to identify the mechanical characteristics of these three types of seismic isolation bearings. Cyclic horizontal displacement tests, varying the test parameters of shear displacement amplitude axial load, and loading frequency tests were performed on each type of bearing. Bearing shear stiffness and damping properties were investigated in terms of the different test parameters. The ultimate tests consisted of monotonic shear loading to failure under axial loads, and tension failure tests of the bearings with bolted connections. Comparisons are made between experimental results and available analytical relationships for material and bearing properties

    A study on the characteristics of bridge bearings behavior by finite element analysis and model test

    Get PDF
    The increased vibration level of the railway bridge could make significant noise and, also, cause structural damages such as fatigue cracks. Related to these subjects, a spherical elastomeric bridge bearing, which is layered by hemispherical rubber and steel plates, was investigated in terms of its vibration performance. Several different shape factors could be considered by changing the curvature of hemispherical surface and size in rubber and steel plate thicknesses in the manufacturing stage. The performance of the spherical elastomeric bearing for the reduction in vibration was compared with that of the conventional bearing by performing vibration experiments on a scale-downed model. The rubber material characteristics and spherical shape are found to be important parameters in reducing the bridge vibration

    Past, Present and Future Molecular Approaches to Improve Yield in Wheat

    Get PDF
    This chapter addresses the development and use of molecular markers for yield enhancement in wheat. Since their key goal for breeding is to maximize yield, extensive efforts have been made toward the improvement of yield. Agronomic traits related to yield, yield-related, disease resistance, and abiotic stresses are considered to be quantitative traits (QTLs), also known as complex traits, because they are controlled by numerous genes and are affected by environmental factors. Researchers have been studying such traits in the past decades for the development of molecular markers which can be used in various wheat breeding studies mainly involving restriction fragment length polymorphism (RFLP), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), random amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP). Furthermore, the advent of next-generation sequencing (NGS) has accelerated the discovery of agronomically important genes. All of the technologies have enabled great advances for increasing the productivity of wheat. Here, the past history of first-generation sequencing, present status of second-generation sequencing, and future potential of translational genomics linked to the yield will be discussed
    • …
    corecore