50 research outputs found

    Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase1,21Escherichia coli thymidylate synthase numbering is used unless otherwise noted.2PDB coordinates have been deposited with the RCSB with accession ID: 1JG0.

    Get PDF
    AbstractBackground: Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-parallel synthetic elaboration and enzyme assay [Tondi et al. (1999) Chem. Biol. 6, 319–331]. Specificity was achieved through protein plasticity and despite the very high sequence conservation of the enzyme between species.Results: The most potent of the inhibitors synthesized, N,O-didansyl-L-tyrosine (DDT), binds to Lactobacillus casei TS (LcTS) with 35-fold higher affinity and to Escherichia coli TS (EcTS) with 24-fold higher affinity than to human TS (hTS). To reveal the molecular basis for this specificity, we have determined the crystal structure of EcTS complexed with DDT and 2′-deoxyuridine-5′-monophosphate (dUMP). The 2.0 Å structure shows that DDT binds to EcTS in a conformation not predicted by molecular docking studies and substantially differently than other TS inhibitors. Binding of DDT is accompanied by large rearrangements of the protein both near and distal to the enzyme’s active site with movement of Cα carbons up to 6 Å relative to other ternary complexes. This protein plasticity results in novel interactions with DDT including the formation of hydrogen bonds and van der Waals interactions to residues conserved in bacterial TS but not hTS and which are hypothesized to account for DDT’s specificity. The conformation DDT adopts when bound to EcTS explains the activity of several other LcTS inhibitors synthesized in-parallel with DDT suggesting that DDT binds to the two enzymes in similar orientations.Conclusions: Dramatic protein rearrangements involving both main and side chain atoms play an important role in the recognition of DDT by EcTS and highlight the importance of incorporating protein plasticity in drug design. The crystal structure of the EcTS/dUMP/DDT complex is a model system to develop more selective TS inhibitors aimed at pathogenic bacterial species. The crystal structure also suggests a general formula for identifying regions of TS and other enzymes that may be treated as flexible to aid in computational methods of drug discovery

    Mg 2+ Binds to the Surface of Thymidylate Synthase and Affects Hydride Transfer at the Interior Active Site

    Get PDF
    Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e. the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg2+ has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg2+ binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg2+ near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg2+ binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg2+ to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg2+ accelerates the hydride transfer by ca. 7-fold but does not affect the magnitude or temperature-dependence of the intrinsic kinetic isotope effect. These results suggest that Mg2+ facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg2+ concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg2+ with the glutamyl-tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with poly-glutamyl substitutes as species-specific antibiotic drugs

    Structural and functional basis for RNA cleavage by Ire1

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. RESULTS: This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing \u3e/=7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. CONCLUSIONS: Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L

    Structure of LacY with an α-substituted galactoside: Connecting the binding site to the protonation site

    No full text
    SignificanceSubstituted d-galactopyranosides, particularly those in the α configuration and/or with hydrophobic constituents at the anomeric position, bind to LacY with higher affinity than the physiological substrate lactose that has a β configuration. The structure of a conformationally restricted LacY mutant with bound p-nitrophenyl-α-d-galactopyranoside (α-NPG), a high-affinity lactose analog, is described. Higher affinity, gained by nonspecific hydrophobic interaction of the nitrophenyl group, shows identical interaction at the key galactosyl moiety as in thio-digalactoside and so validates the highly specific, oriented set of hydrogen bonds with the key galactosyl moiety of substrates. Confirmation of galactose-specific binding interactions delineates a directional hydrogen-bonding network that couples the binding site to sites that are sensitive to protonation in the mechanism.The X-ray crystal structure of a conformationally constrained mutant of the Escherichia coli lactose permease (the LacY double-Trp mutant Gly-46→Trp/Gly-262→Trp) with bound p-nitrophenyl-α-d-galactopyranoside (α-NPG), a high-affinity lactose analog, is described. With the exception of Glu-126 (helix IV), side chains Trp-151 (helix V), Glu-269 (helix VIII), Arg-144 (helix V), His-322 (helix X), and Asn-272 (helix VIII) interact directly with the galactopyranosyl ring of α-NPG to provide specificity, as indicated by biochemical studies and shown directly by X-ray crystallography. In contrast, Phe-20, Met-23, and Phe-27 (helix I) are within van der Waals distance of the benzyl moiety of the analog and thereby increase binding affinity nonspecifically. Thus, the specificity of LacY for sugar is determined solely by side-chain interactions with the galactopyranosyl ring, whereas affinity is increased by nonspecific hydrophobic interactions with the anomeric substituent
    corecore