1,736 research outputs found

    A Transiting Planet of a Sun-like Star

    Get PDF
    A planet transits an 11th magnitude, G1V star in the constellation Corona Borealis. We designate the planet XO-1b, and the star, XO-1, also known as GSC 02041-01657. XO-1 lacks a trigonometric distance; we estimate it to be 200+-20 pc. Of the ten stars currently known to host extrasolar transiting planets, the star XO-1 is the most similar to the Sun in its physical characteristics: its radius is 1.0+-0.08 R_Sun, its mass is 1.0+-0.03 M_Sun, V sini < 3 km/s, and its metallicity [Fe/H] is 0.015+-0.04. The orbital period of the planet XO-1b is 3.941534+-0.000027 days, one of the longer ones known. The planetary mass is 0.90+-0.07 M_Jupiter, which is marginally larger than that of other transiting planets with periods between 3 and 4 days. Both the planetary radius and the inclination are functions of the spectroscopically determined stellar radius. If the stellar radius is 1.0+-0.08 R_Sun, then the planetary radius is 1.30+-0.11 R_Jupiter and the inclination of the orbit is 87.7+-1.2 degrees. We have demonstrated a productive international collaboration between professional and amateur astronomers that was important to distinguishing this planet from many other similar candidates.Comment: 31 pages, 9 figures, accepted for part 1 of Ap

    XO-5b: A Transiting Jupiter-sized Planet With A Four Day Period

    Full text link
    The star XO-5 (GSC 02959-00729, V=12.1, G8V) hosts a Jupiter-sized, Rp=1.15+/-0.12 Rjup, transiting extrasolar planet, XO-5b, with an orbital period of P=4.187732+/-0.00002 days. The planet mass (Mp=1.15+/-0.08 Mjup) and surface gravity (gp=22+/-5 m/s^2) are significantly larger than expected by empirical Mp-P and Mp-P-[Fe/H] relationships. However, the deviation from the Mp-P relationship for XO-5b is not large enough to suggest a distinct type of planet as is suggested for GJ 436b, HAT-P-2b, and XO-3b. By coincidence XO-5 overlies the extreme H I plume that emanates from the interacting galaxy pair NGC 2444/NGC 2445 (Arp 143).Comment: 10 pages, 9 Figures, Submitted to Ap

    A Gyrochronology and Microvariability Survey of the Milky Way's Older Stars Using Kepler's Two-Wheels Program

    Full text link
    Even with the diminished precision possible with only two reaction wheels, the Kepler spacecraft can obtain mmag level, time-resolved photometry of tens of thousands of sources. The presence of such a rich, large data set could be transformative for stellar astronomy. In this white paper, we discuss how rotation periods for a large ensemble of single and binary main- sequence dwarfs can yield a quantitative understanding of the evolution of stellar spin-down over time. This will allow us to calibrate rotation-based ages beyond ~1 Gyr, which is the oldest benchmark that exists today apart from the Sun. Measurement of rotation periods of M dwarfs past the fully-convective boundary will enable extension of gyrochronology to the end of the stellar main-sequence, yielding precise ages ({\sigma} ~10%) for the vast majority of nearby stars. It will also help set constraints on the angular momentum evolution and magnetic field generation in these stars. Our Kepler-based study would be supported by a suite of ongoing and future ground-based observations. Finally, we briefly discuss two ancillary science cases, detection of long-period low-mass eclipsing binaries and microvariability in white dwarfs and hot subdwarf B stars that the Kepler Two-Wheels Program would facilitate.Comment: Kepler white pape

    XO-2b: Transiting Hot Jupiter in a Metal-rich Common Proper Motion Binary

    Full text link
    We report on a V=11.2 early K dwarf, XO-2 (GSC 03413-00005), that hosts a Rp=0.98+0.03/-0.01 Rjup, Mp=0.57+/-0.06 Mjup transiting extrasolar planet, XO-2b, with an orbital period of 2.615857+/-0.000005 days. XO-2 has high metallicity, [Fe/H]=0.45+/-0.02, high proper motion, mu_tot=157 mas/yr, and has a common proper motion stellar companion with 31" separation. The two stars are nearly identical twins, with very similar spectra and apparent magnitudes. Due to the high metallicity, these early K dwarf stars have a mass and radius close to solar, Ms=0.98+/-0.02 Msolar and Rs=0.97+0.02/-0.01 Rsolar. The high proper motion of XO-2 results from an eccentric orbit (Galactic pericenter, Rper<4 kpc) well confined to the Galactic disk (Zmax~100 pc). In addition, the phase space position of XO-2 is near the Hercules dynamical stream, which points to an origin of XO-2 in the metal-rich, inner Thin Disk and subsequent dynamical scattering into the solar neighborhood. We describe an efficient Markov Chain Monte Carlo algorithm for calculating the Bayesian posterior probability of the system parameters from a transit light curve.Comment: 14 pages, 10 Figures, Accepted in ApJ. Negligible changes to XO-2 system properties. Removed Chi^2 light curve analysis section, and simplified MCMC light curve analysis discussio

    Exposing athletes to playing form activity: outcomes of a randomised control trial among community netball teams using a game-centred approach.

    Get PDF
    This study evaluated whether exposing junior netball players to greater amounts of competition relevant activity (playing form activity) had an effect on game play outcomes and session involvement. A group-randomised controlled trial in one junior netball club in the Hunter Region, NSW, Australia. Ninety female athletes (mean age = 9.04 years, SD 1.53) were randomised by team (n = 11) into the intervention (n = 41) or 9-week wait-list control (n = 49) condition. The Professional Learning for Understanding Games Education into Sport (PLUNGE into Sport) programme was undertaken in the first half of nine training sessions (9 × 30 min). The intervention exposed athletes to playing form activity through a coach development programme within training sessions. Athletes' decision-making, support and skill outcomes during a small-sided invasion game, and session involvement (pedometer step/min), were measured at baseline and 9-week follow-up. Linear mixed models revealed significant group-by-time intervention effects (P < 0.05) for decision-making (d = 0.4) and support (d = 0.5) during game play, and in-session activity (d = 1.2). An intervention exposing athletes to greater levels of playing form activity, delivered via a coach education programme, was efficacious in improving athlete decision-making and support skills in game play and increasing athlete involvement during sessions

    Hesitancy around low dose CT screening for lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer death worldwide. The absence of symptoms in early stage (I/II) disease, when curative treatment is possible, results in greater than 70% of cases being diagnosed at late stage (III/IV), when treatment is rarely curative. This contributes greatly to lung cancer's poor prognosis which sees only 16.2% of individuals diagnosed with the disease alive at 5 years. Early detection is key to improving lung cancer survival outcomes. As a result, there has been longstanding interest in finding a reliable screening test. After little success with chest radiography and sputum cytology, in 2011 the US National Lung Screening Trial (NLST) demonstrated that annual Low Dose Computed Tomography (LDCT) screening reduced lung cancer specific mortality by 20%, when compared with annual chest radiography. In 2020, the NELSON study demonstrated an even greater reduction in lung cancer specific mortality for LDCT screening at 0, 1, 3 and 5.5 years of 24% in men, when compared to no screening. Despite these impressive results, a call to arms in the 2017 European position statement on Lung Cancer Screening (LCS), and the widespread introduction across the US, there was, until recently, no population-based European national screening programme in place. We address the potential barriers and outstanding concerns including common screening foes, such as false positive tests, overdiagnosis, and the negative psychological impact of screening, as well as others more unique to LDCT LCS, including appropriate risk stratification of potential participants, radiation exposure and incidental findings. In doing this, we conclude that whilst the evidence generated from ongoing work can be used to refine the screening process, for those risks which remain, appropriate and acceptable mitigations are available, and none should serve as barriers to the implementation of national unified LCS programmes across Europe and beyond

    Brain Endothelial Cells Activate Neuroinflammatory Pathways in Response to Early Cerebral Small Vessel Disease (CSVD) Patients’ Plasma

    Get PDF
    The pathogenesis of cerebral small vessel disease (CSVD) is largely unknown. Endothelial disfunction has been suggested as the turning point in CSVD development. In this study, we tested the effect of plasma from CSVD patients on human cerebral microvascular endothelial cells with the aim of describing the pattern of endothelial activation. Plasma samples from three groups of young subjects have been tested: PTs (subjects affected by early stage CSVD); CTRLs (control subjects without abnormalities at MRI scanning); BDs (blood donors). Human Brain Endothelial Cells 5i (HBEC5i) were treated with plasma and total RNA was extracted. RNAs were pooled to reduce gene expression-based variability and NGS analysis was performed. Differentially expressed genes were highlighted comparing PTs, CTRLs and BDs with HBEC5i untreated cells. No significantly altered pathway was evaluated in BD-related treatment. Regulation of p38 MAPK cascade (GO:1900744) was the only pathway altered in CTRL-related treatment. Indeed, 36 different biological processes turned out to be deregulated after PT treatment of HBEC5i, i.e., the cytokine-mediated signaling pathway (GO:0019221). Endothelial cells activate inflammatory pathways in response to stimuli from CSVD patients' plasma, suggesting the pathogenetic role of neuroinflammation from the early asymptomatic phases of cerebrovascular disease
    corecore