22 research outputs found

    Climate driven trends in London's urban heat island intensity reconstructed over 70 years using a generalized additive model

    Get PDF
    Long-term urban heat island (UHI) observations are uncommon and where available, are generally unable to distinguish changing climate drivers from urban expansion; neither driver is treated independently. We overcome this limitation using a generalized additive model to learn the variability in UHI intensity (UHII) at a central London weather station (St James's Park) over a 10-year observation period (2010–2019). We then use the model to reconstruct 70 years (1950–2019) of monthly night-time UHII variability using ERA5 reanalysis data both as a reference in UHII calculation and for the predictors. We find considerable variability both seasonally and annually within the UHII time series (monthly mean maximum UHIIs are 1.4–2.9 °C). Applying extreme value analysis to the time series we show that monthly mean maximum UHIIs are likely to exceed 2.75 °C once every 11 years. Considering that most studies observe or model UHIIs for less than a year, they will likely misrepresent this UHII variability. Nevertheless, despite moving to a warmer background climate, London's UHII has not significantly changed across the period of analysis (1950–2019). The data-driven methods we create in this study are easily transferable to other cities

    Universality classes in nonequilibrium lattice systems

    Full text link
    This work is designed to overview our present knowledge about universality classes occurring in nonequilibrium systems defined on regular lattices. In the first section I summarize the most important critical exponents, relations and the field theoretical formalism used in the text. In the second section I briefly address the question of scaling behavior at first order phase transitions. In section three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and the percolation behavior. The main body of this work is given in section four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In section five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of the known nonequilibrium transition classes are explored in low dimensions between active and absorbing states of reaction-diffusion type of systems. However by mapping they can be related to universal behavior of interface growth models, which I overview in section six. Finally in section seven I summarize families of absorbing state system classes, mean-field classes and give an outlook for further directions of research.Comment: Updated comprehensive review, 62 pages (two column), 29 figs included. Scheduled for publication in Reviews of Modern Physics in April 200

    Operating characteristics of a linear Hall thruster with an open electron-drift

    No full text

    The transient behavior of a low power laboratory xenon Hall thruster

    No full text

    Numerical Simulations of a 2kW Hall Thruster

    No full text
    corecore