17 research outputs found

    Low IL-8 is associated with anxiety in suicidal patients: genetic variation and decreased protein levels.

    No full text
    Recent studies indicate that inflammation may play a role in the pathophysiology of suicidality. Interleukin-8 (IL-8) is a chemokine that in addition to its function in the immune system also exert neuroprotective properties. The involvement of this chemokine in neuropsychiatric conditions is incompletely known

    Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer's disease

    Get PDF
    Failures in Alzheimer's disease (AD) drug trials highlight the need to further explore disease mechanisms and alterations of biomarkers during the development of AD. Using cross-sectional data from 377 participants in the BioFINDER study, we examined seven cerebrospinal fluid (CSF) and six plasma biomarkers in relation to β-amyloid (Aβ) PET uptake to understand their evolution during AD. In CSF, Aβ42 changed first, closely followed by Aβ42/Aβ40, phosphorylated-tau (P-tau), and total-tau (T-tau). CSF neurogranin, YKL-40, and neurofilament light increased after the point of Aβ PET positivity. The findings were replicated using Aβ42, Aβ40, P-tau, and T-tau assays from five different manufacturers. Changes were seen approximately simultaneously for CSF and plasma biomarkers. Overall, plasma biomarkers had smaller dynamic ranges, except for CSF and plasma P-tau which were similar. In conclusion, using state-of-the-art biomarkers, we identified the first changes in Aβ, closely followed by soluble tau. Only after Aβ PET became abnormal, biomarkers of neuroinflammation, synaptic dysfunction, and neurodegeneration were altered. These findings lend in vivo support of the amyloid cascade hypotheses in humans

    Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer's disease

    No full text
    Mild behavioral impairment (MBI) is suggested as risk marker for neurodegenerative diseases, such as Alzheimer's disease (AD). Recently, pathologic tau deposition in the brain has been shown closely related to clinical manifestations, such as cognitive deficits. Yet, associations between tau pathology and MBI have rarely been investigated. It is further debated if MBI precedes cognitive deficits in AD. Here, we explored potential mechanisms by which MBI is related to AD, this by studying associations between MBI and tau in preclinical AD. In all, 50 amyloid-β-positive cognitively unimpaired subjects (part of the BioFINDER-2 study) underwent MBI-checklist (MBI-C) to assess MBI, and the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) delayed word recall (ADAS-DR) to assess episodic memory. Early tau pathology was determined using tau-PET ([18F]RO948 retention in entorhinal cortex/hippocampus) and cerebrospinal fluid (CSF) P-tau181. Regression models were used to test for associations. We found that higher tau-PET signal in the entorhinal cortex/hippocampus and CSF P-tau181 levels were associated with higher MBI-C scores (β = 0.010, SE = 0.003, p = 0.003 and β = 1.263, SE = 0.446, p = 0.007, respectively). When MBI-C and ADAS-DR were entered together in the regression models, tau-PET (β = 0.009, p = 0.009) and CSF P-tau181 (β = 0.408, p = 0.006) were predicted by MBI-C, but not ADAS-DR. We conclude that in preclinical AD, MBI is associated with tau independently from memory deficits. This denotes MBI as an important early clinical manifestation related to tau pathology in AD

    Test-retest variability of plasma biomarkers in Alzheimer's disease and its effects on clinical prediction models

    Get PDF
    INTRODUCTION: The effect of random error on the performance of blood-based biomarkers for Alzheimer's disease (AD) must be determined before clinical implementation. METHODS: We measured test-retest variability of plasma amyloid beta (Aβ)42/Aβ40, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau (p-tau)217 and simulated effects of this variability on biomarker performance when predicting either cerebrospinal fluid (CSF) Aβ status or conversion to AD dementia in 399 non-demented participants with cognitive symptoms. RESULTS: Clinical performance was highest when combining all biomarkers. Among single-biomarkers, p-tau217 performed best. Test-retest variability ranged from 4.1% (Aβ42/Aβ40) to 25% (GFAP). This variability reduced the performance of the biomarkers (≈ΔAUC [area under the curve] −1% to −4%) with the least effects on models with p-tau217. The percent of individuals with unstable predicted outcomes was lowest for the multi-biomarker combination (14%). DISCUSSION: Clinical prediction models combining plasma biomarkers—particularly p-tau217—exhibit high performance and are less effected by random error. Individuals with unstable predicted outcomes (“gray zone”) should be recommended for further tests

    The genetic regulation of protein expression in cerebrospinal fluid

    Get PDF
    Abstract Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10−10, 117 cis‐pQTLs and 59 trans‐pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF‐specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP‐10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP‐10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome

    A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings

    No full text
    Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n = 548) and in the TRIAD study (n = 179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value

    Additional file 1 of Plasma N-terminal containing tau fragments (NTA-tau): a biomarker of tau deposition in Alzheimer’s Disease

    No full text
    Additional file 1: Supplementary Figure 1. Plasma NTA-tau levels across AA criteria for staging AD using PET (BioFINDER-2). Supplementary Figure 2. Regional associations between plasma NTA-tau, p-tau181, NfL and GFAP levels with Aβ-PET, tau-PET and cortical thickness (BioFINDER-2). Supplementary Table 1. Characteristics of the subsample with available plasma t-tau (BioFINDER-2). Supplementary Table 2. Plasma NTA-tau levels by diagnosis (BioFINDER-2). Supplementary Table 3. Characteristics of the sample by AT status (BioFINDER-2). Supplementary Table 4. Plasma NTA-tau levels by AT status (BioFINDER-2). Supplementary Table 5. Characteristics of the sample by Braak stages (BioFINDER-2). Supplementary Table 6. Plasma NTA-tau levels by Braak stages (BioFINDER-2). Supplementary Table 7. Plasma NTA-tau levels by AA criteria for staging AD (BioFINDER-2). Supplementary Table 8. Plasma NTA-tau levels by diagnosis (BioFINDER-1). Supplementary Table 9. Comparison between models including/excluding an interaction between plasma NTA-tau and Aβ-status (BioFINDER-2 and -1). Supplementary Table 10. Proportion of variation of plasma biomarker levels explained by amyloid and tau (BioFINDER-2). Supplementary Table 11. Characteristics of the longitudinal tau-PET sample (BioFINDER-2). Supplementary Table 12. Characteristics of the longitudinal MRI sample (BioFINDER-2). Supplementary Table 13. Characteristics of the longitudinal MRI sample (BioFINDER-1). Supplementary Table 14. Characteristics of the longitudinal cognition sample (BioFINDER-2). Supplementary Table 15. Characteristics of the longitudinal cognition sample (BioFINDER-1). Supplementary Table 16. Characteristics of the longitudinal plasma NTA-tau (BioFINDER-1)

    Plasma p-tau217 predicts in vivo brain pathology and cognition in autosomal dominant Alzheimer's disease

    No full text
    Introduction: Plasma-measured tau phosphorylated at threonine 217 (p-tau217) is a potential non-invasive biomarker of Alzheimer's disease (AD). We investigated whether plasma p-tau217 predicts subsequent cognition and positron emission tomography (PET) markers of pathology in autosomal dominant AD. Methods: We analyzed baseline levels of plasma p-tau217 and its associations with amyloid PET, tau PET, and word list delayed recall measured 7.61 years later in non-demented age- and education-matched presenilin-1 E280A carriers (n = 24) and non-carrier (n = 20) family members. Results: Carriers had higher plasma p-tau217 levels than non-carriers. Baseline plasma p-tau217 was associated with subsequent amyloid and tau PET pathology levels and cognitive function. Discussion: Our findings suggest that plasma p-tau217 predicts subsequent brain pathological burden and memory performance in presenilin-1 E280A carriers. These results provide support for plasma p-tau217 as a minimally invasive diagnostic and prognostic biomarker for AD, with potential utility in clinical practice and trials. Highlights: Non-demented presenilin-1 E280A carriers have higher plasma tau phosphorylated at threonine 217 (p-tau217) than do age-matched non-carriers. Higher baseline p-tau217 is associated with greater future amyloid positron emission tomography (PET) pathology burden. Higher baseline p-tau217 is associated with greater future tau PET pathology burden. Higher baseline p-tau217 is associated with worse future memory performance
    corecore