274 research outputs found
A Study of the (3-He,t) Charge-Exchange Reaction at E(3-He) = 200 MeV
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
Halo Excitation of He in Inelastic and Charge-Exchange Reactions
Four-body distorted wave theory appropriate for nucleon-nucleus reactions
leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is
developed. The peculiarities of the halo bound state and 3-body continuum are
fully taken into account by using the method of hyperspherical harmonics. The
procedure is applied for A=6 test-bench nuclei; thus we report detailed studies
of inclusive cross sections for inelastic He(p,p')He and
charge-exchange Li(n,p)He reactions at nucleon energy 50 MeV. The
theoretical low-energy spectra exhibit two resonance-like structures. The first
(narrow) is the excitation of the well-known three-body resonance. The
second (broad) bump is a composition of overlapping soft modes of
multipolarities whose relative weights depend on
transferred momentum and reaction type. Inelastic scattering is the most
selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps
Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies
Using linkage analysis and whole-exome sequencing, Safka Brozkova et al. reveal missense mutations in the histidyl-tRNA synthetase gene in 23 patients from four families with axonal and demyelinating neuropathies of varying severity. The mutations cause loss of function in yeast complementation assays and neurotoxicity in a C. elegans mode
Production and use of 6He, 7Be, 8Li, 12B and metastable nuclear beams
A low energy (few MeV/nucleon), modest flux (104-107/s) radioactive nuclear beam (RNB) facility has been in operation for approximately three years at the University of Notre Dame Van de Graaff accelerator. This facility utilizes a compact superconducting solenoid lens, designed at the University of Michigan, with adjustable apertures to produce momentum-analyzed secondary beams via the direct transfer and other methods. Useable beams of 6He, 7Be, 8Li, 12B, 18F and to our knowledge the first isomeric beam, 18mF, have been produced and a first generation of RNB experiments has been successfully completed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29368/1/0000438.pd
SNP array-based whole genome homozygosity mapping as the first step to a molecular diagnosis in patients with Charcot-Marie-Tooth disease
Considerable non-allelic heterogeneity for autosomal recessively inherited Charcot-Marie-Tooth (ARCMT) disease has challenged molecular testing and often requires a large amount of work in terms of DNA sequencing and data interpretation or remains unpractical. This study tested the value of SNP array-based whole-genome homozygosity mapping as a first step in the molecular genetic diagnosis of sporadic or ARCMT in patients from inbred families or outbred populations with the ancestors originating from the same geographic area. Using 10 K 2.0 and 250 K Nsp Affymetrix SNP arrays, 15 (63%) of 24 CMT patients received an accurate genetic diagnosis. We used our Java-based script eHoPASA CMT—easy Homozygosity Profiling of SNP arrays for CMT patients to display the location of homozygous regions and their extent of marker count and base-pairs throughout the whole genome. CMT4C was the most common genetic subtype with mutations detected in SH3TC2, one (p.E632Kfs13X) appearing to be a novel founder mutation. A sporadic patient with severe CMT was homozygous for the c.250G > C (p.G84R) HSPB1 mutation which has previously been reported to cause autosomal dominant dHMN. Two distantly related CMT1 patients with early disease onset were found to carry a novel homozygous mutation in MFN2 (p.N131S). We conclude that SNP array-based homozygosity mapping is a fast, powerful, and economic tool to guide molecular genetic testing in ARCMT and in selected sporadic CMT patients
Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies.
Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease
Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function
BACKGROUND: Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing forebrain and eyes of all vertebrates. OBJECTIVE: To characterise genetic and clinical findings in patients with SIX3 mutations. METHODS: Patients with HPE and their family members were tested for mutations in HPE-associated genes and the genetic and clinical findings, including those for additional cases found in the literature, were analysed. The results were correlated with a mutation-specific functional assay in zebrafish. RESULTS: In a cohort of patients (n = 800) with HPE, SIX3 mutations were found in 4.7% of probands and additional cases were found through testing of relatives. In total, 138 cases of HPE were identified, 59 of whom had not previously been clinically presented. Mutations in SIX3 result in more severe HPE than in other cases of non-chromosomal, non-syndromic HPE. An over-representation of severe HPE was found in patients whose mutations confer greater loss of function, as measured by the functional zebrafish assay. The gender ratio in this combined set of patients was 1.5:1 (F:M) and maternal inheritance was almost twice as common as paternal. About 14% of SIX3 mutations in probands occur de novo. There is a wide intrafamilial clinical range of features and classical penetrance is estimated to be at least 62%. CONCLUSIONS: Our data suggest that SIX3 mutations result in relatively severe HPE and that there is a genotype-phenotype correlation, as shown by functional studies using animal models
MKS3/TMEM67 mutations are a major cause of COACH syndrome, a joubert syndrome related disorder with liver involvement
The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/
aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the
“molar tooth sign”, a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs
Exome Sequencing Identifies Compound Heterozygous Mutations in CYP4V2 in a Pedigree with Retinitis Pigmentosa
Retinitis pigmentosa (RP) is a heterogeneous group of progressive retinal degenerations characterized by pigmentation and atrophy in the mid-periphery of the retina. Twenty two subjects from a four-generation Chinese family with RP and thin cornea, congenital cataract and high myopia is reported in this study. All family members underwent complete ophthalmologic examinations. Patients of the family presented with bone spicule-shaped pigment deposits in retina, retinal vascular attenuation, retinal and choroidal dystrophy, as well as punctate opacity of the lens, reduced cornea thickness and high myopia. Peripheral venous blood was obtained from all patients and their family members for genetic analysis. After mutation analysis in a few known RP candidate genes, exome sequencing was used to analyze the exomes of 3 patients III2, III4, III6 and the unaffected mother II2. A total of 34,693 variations shared by 3 patients were subjected to several filtering steps against existing variation databases. Identified variations were verified in the rest family members by PCR and Sanger sequencing. Compound heterozygous c.802-8_810del17insGC and c.1091-2A>G mutations of the CYP4V2 gene, known as genetic defects for Bietti crystalline corneoretinal dystrophy, were identified as causative mutations for RP of this family
Molecular epidemiology of DFNB1 deafness in France
BACKGROUND: Mutations in the GJB2 gene have been established as a major cause of inherited non syndromic deafness in different populations. A high number of sequence variations have been described in the GJB2 gene and the associated pathogenic effects are not always clearly established. The prevalence of a number of mutations is known to be population specific, and therefore population specific testing should be a prerequisite step when molecular diagnosis is offered. Moreover, population studies are needed to determine the contribution of GJB2 variants to deafness. We present our findings from the molecular diagnostic screening of the GJB2 and GJB6 genes over a three year period, together with a population-based study of GJB2 variants. METHODS AND RESULTS: Molecular studies were performed using denaturing High Performance Liquid Chromatograghy (DHPLC) and sequencing of the GJB2 gene. Over the last 3 years we have studied 159 families presenting sensorineural hearing loss, including 84 with non syndromic, stable, bilateral deafness. Thirty families were genotyped with causative mutations. In parallel, we have performed a molecular epidemiology study on more than 3000 dried blood spots and established the frequency of the GJB2 variants in our population. Finally, we have compared the prevalence of the variants in the hearing impaired population with the general population. CONCLUSION: Although a high heterogeneity of sequence variation was observed in patients and controls, the 35delG mutation remains the most common pathogenic mutation in our population. Genetic counseling is dependent on the knowledge of the pathogenicity of the mutations and remains difficult in a number of cases. By comparing the sequence variations observed in hearing impaired patients with those sequence variants observed in general population, from the same ethnic background, we show that the M34T, V37I and R127H variants can not be responsible for profound or severe deafness
- …