253 research outputs found

    Quality of Life in Prodromal HD: Qualitative Analyses of Discourse from Participants and Companions

    Get PDF
    Persons who are at risk for Huntington's Disease (HD) can be tested for the HD gene expansion before symptom onset. People with the gene expansion, but no clinical diagnosis, are in the prodromal phase of HD. This study explored quality of life (QOL) in prodromal HD. Interviews about QOL, conducted with 9 prodromal HD participants and 6 companions, were transcribed. Discourse was coded for emotional valence, content (e.g., coping, spirituality, interpersonal relationships, HD in others, and employment), and time frame (e.g., current, past, and future). Respondents were more positive than negative about the present, which was their major focus. The most common statements were about positive attitudes. Positive statements were made about spirituality, and negative statements were made about HD in other people. Relationships, employment, and coping with HD reflected both positivity and negativity. Participants and companions spoke of the future with different concerns. Applicability of findings to the clinical management of HD are discussed

    Dissociations within nondeclarative memory in Huntington's disease.

    Get PDF

    A clinical trial method to show delay of onset in Huntington disease

    Get PDF
    Background: Disease-modifying clinical trials in persons without symptoms are often limited in methods to assess the impact associated with experimental therapeutics. This study suggests sample enrichment approaches to facilitate preventive trials to delay disease onset in individuals with the dominant gene for Huntington disease. Methods: Using published onset prediction indexes, we conducted the receiver operating curve analysis for diagnosis within a 3-year clinical trial time frame. We determined optimal cut points on the indexes for participant recruitment and then conducted sample size and power calculations to detect varying effect sizes for treatment efficacy in reducing 3-year rates of disease onset (or diagnosis). Results: Area under the curve for 3 onset prediction indexes all demonstrated excellent value in sample enrichment methodology, with the best-performing index being the multivariate risk score (MRS). Conclusions: This study showed that conducting an intervention trial in premanifest and prodromal individuals with the gene expansion for Huntington disease is highly feasible using sample enrichment recruitment methods. Ongoing natural history studies are highly likely to indicate additional markers of disease prior to diagnosis. Statistical modeling of identified markers can facilitate participant enrichment to increase the likelihood of detecting a difference between treatment arms in a cost-effective and efficient manner. Such variations may expedite translation of emerging therapies to persons in an earlier phase of the disease

    WHODAS 2.0 in prodromal Huntington disease : measures of functioning in neuropsychiatric disease

    Get PDF
    We thank the PREDICT-HD sites, the study participants, the National Research Roster for Huntington Disease Patients and Families, the Huntington’s Disease Society of America and the Huntington Study Group. This research was supported by the National Center for Advancing Translational Sciences, and the National Institutes of Health (NIH), through Grant 2 UL1 TR000442-06. This research is supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke (NS040068), CHDI Foundation, Inc (A3917), Cognitive and Functional Brain Changes in Preclinical Huntington’s Disease (HD) (5R01NS054893), 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington’s (1U01NS082086), Functional Connectivity in Pre-manifest Huntington’s Disease (1U01NS082083), and Basal Ganglia Shape Analysis and Circuitry in Huntington’s Disease (1U01NS082085).Peer reviewedPublisher PD

    Perceptions of genetic discrimination among people at risk for Huntington’s disease: a cross sectional survey

    Get PDF
    Objective To assess the nature and prevalence of genetic discrimination experienced by people at risk for Huntington’s disease who had undergone genetic testing or remained untested

    Regional subcortical shape analysis in premanifest Huntington’s disease

    Full text link
    Huntington’s disease (HD) involves preferential and progressive degeneration of striatum and other subcortical regions as well as regional cortical atrophy. It is caused by a CAG repeat expansion in the Huntingtin gene, and the longer the expansion the earlier the age of onset. Atrophy begins prior to manifest clinical signs and symptoms, and brain atrophy in premanifest expansion carriers can be studied. We employed a diffeomorphometric pipeline to contrast subcortical structures’ morphological properties in a control group with three disease groups representing different phases of premanifest HD (far, intermediate, and near to onset) as defined by the length of the CAG expansion and the participant’s age (CAG‐Age‐Product). A total of 1,428 magnetic resonance image scans from 694 participants from the PREDICT‐HD cohort were used. We found significant region‐specific atrophies in all subcortical structures studied, with the estimated abnormality onset time varying from structure to structure. Heterogeneous shape abnormalities of caudate nuclei were present in premanifest HD participants estimated furthest from onset and putaminal shape abnormalities were present in participants intermediate to onset. Thalamic, hippocampal, and amygdalar shape abnormalities were present in participants nearest to onset. We assessed whether the estimated progression of subcortical pathology in premanifest HD tracked specific pathways. This is plausible for changes in basal ganglia circuits but probably not for changes in hippocampus and amygdala. The regional shape analyses conducted in this study provide useful insights into the effects of HD pathology in subcortical structures.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148249/1/hbm24456.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148249/2/hbm24456_am.pd

    Phenotype Characterization of HD Intermediate Alleles in PREDICT-HD

    Get PDF
    BACKGROUND: Huntington disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion on chromosome 4. Pathology is associated with CAG repeat length. Prior studies examining people in the intermediate allele (IA) range found subtle differences in motor, cognitive, and behavioral domains compared to controls. OBJECTIVE: The purpose of this study was to examine baseline and longitudinal differences in motor, cognitive, behavioral, functional, and imaging outcomes between persons with CAG repeats in three ranges: normal (≤26), intermediate (27-35), and reduced penetrance (36-39). METHODS: We examined longitudinal data from 389 participants in three allele groups: 280 normal controls (NC), 21 intermediate allele [IA], and 88 reduced penetrance [RP]. We used linear mixed models to identify differences in baseline and longitudinal outcomes between groups. Three models were tested: 1) no baseline or longitudinal differences; 2) baseline differences but no longitudinal differences; and 3) baseline and longitudinal differences. RESULTS: Model 1 was the best fitting model for most outcome variables. Models 2 and 3 were best fitting for some of the variables. We found baseline and longitudinal trends of declining performance across increasing CAG repeat length groups, but no significant differences between the NC and IA groups. CONCLUSION: We did not find evidence to support differences in the IA group compared to the NC group. These findings are limited by a small IA sample size

    High and low levels of an NTRK2-driven genetic profile affect motor- and cognition-associated frontal gray matter in prodromal Huntington's disease

    Get PDF
    This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington’s disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNF’s TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning
    corecore