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Abstract

Background: Huntington disease (HD) is a neurodegenerative disease caused by a CAG repeat 

expansion on chromosome 4. Pathology is associated with CAG repeat length. Prior studies 

examining people in the intermediate allele (IA) range found subtle differences in motor, 

cognitive, and behavioral domains compared to controls.

Objective: The purpose of this study was to examine baseline and longitudinal differences in 

motor, cognitive, behavioral, functional and imaging outcomes between persons with CAG repeats 

in four ranges: normal (≤ 26), intermediate (27–35), reduced penetrance (36–39), and full 

penetrance (≥ 40).

Methods: We examined longitudinal data from 1379 participants (280 normal [NA], 21 

intermediate [IA], 88 reduced penetrance [RP], and 986 full penetrance [FP] allele ranges). We 

used linear mixed models to identify differences in baseline and longitudinal outcomes between 

groups. Three models were tested: 1) no baseline or longitudinal differences; 2) baseline 

differences but no longitudinal differences; and 3) baseline and longitudinal differences.

Results: Model 3 was the best fitting model for most outcome variables. Differences between the 

NA and the FP group account for the majority of significant findings. Some differences between 

the RP and NA groups were significant. While there were baseline and longitudinal trends of 

declining performance across increasing CAG repeat length groups, we found no significant 

differences between the NA and IA groups.

Conclusions: We did not find evidence to support differences in the IA group compared to the 

nongene-expanded controls. These findings are limited by a small IA sample size.
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INTRODUCTION

Huntington disease (HD) is an inherited, autosomal dominant neurodegenerative disease 

caused by a CAG repeat expansion on chromosome 4 [1]. For people in the affected range of 

36 or more CAG repeats, age of disease onset is related to length of CAG repeat, with longer 

CAG repeats associated with earlier age of onset [2]. HD symptoms include motor, 

cognitive, behavioral, and functional changes, with a formal diagnosis based on the presence 

of characteristic motor signs [1].

Current genetic testing guidelines define ranges for disease manifestation based on CAG 

repeat length: ≤ 26 = normal (NA); 27–35 = intermediate (IA); 36–39 = reduced penetrance 

(RP); ≥ 40 = full penetrance (FP) [3]. Persons in the RP range may not develop a formal 

diagnosis in their lifetimes [4]. Individuals in the IA range are highly unlikely to develop a 

formal diagnosis, although there are several notable case reports. Several authors present 

cases of persons with 27–34 CAG repeats demonstrating chorea and involuntary movements, 

sometimes accompanied by saccadic changes, dystonia, cognitive changes, depression, 

anxiety, irritability, and cortical and/or caudate atrophy [5–9].

More recently, evidence from large observational studies suggests that persons in the IA 

range display subtle abnormalities in motor, cognitive, and behavioral domains compared to 

controls. In an analysis of the Cooperative Huntington’s Disease Observational Research 

Trial (COHORT), 50 of the 1985 participants were in the IA range and demonstrated worse 

saccade velocity, dystonia, and performance on the Stroop Color and Word test compared to 

controls [10]. In an analysis of the Prospective Huntington At Risk Observational Study 

(PHAROS) by Killoran et al. [11], 50 of the 983 participants were in the IA range and had 

significantly worse apathy and suicidal ideation than controls. The authors of that article 

suggest the IA range might represent prodromal HD or a behavioral subphenotype. The 

purpose of the current analysis was to examine baseline and longitudinal differences in 

motor, cognitive, behavioral, functional and imaging outcomes between persons in the IA 

range and persons in the NA, RP, and FP ranges who participated in the Neurobiological 

Predictors of Huntington’s Disease (PREDICT-HD) study.

MATERIALS AND METHODS

Participants and data

Participants included in this analysis came from the PREDICT-HD study. PREDICT-HD is a 

prospective, international, 32-site study that follows persons who previously underwent 

testing for the HD gene expansion. Those who tested with their longest allele length ≥ 36 

participated as gene-expanded cases and those with longest allele length ≤ 35 participated as 

control participants. A total of 1379 individuals are included in the data set: 1078 cases and 

301 controls, with more than ten years of follow-up data available for some participants. All 

participants provided written informed consent and were treated in accordance with the 

ethical standards of each site’s institutional review board. Inclusion criteria required 

independent HD genetic testing prior to entering the study, and required all individuals be 

age 18 and above at the time of study entry. Exclusion criteria mandated that cases must not 

have sufficient motor signs for a clinical HD diagnosis at study entry, no history of traumatic 
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brain injury or other central nervous system injury or diseases, no pacemakers or metallic 

implants, no prescribed use of antipsychotic or phenothiazine-derivative antiemetic 

medication in the past six months, and no clinical evidence of unstable medical or 

psychiatric illness. This dataset is ideal for exploring disease progression in HD prior to 

motor diagnosis due to the large sample of premanifest individuals and longitudinal data. 

These data may be sensitive to subtle changes that potentially begin several years before 

motor diagnosis.

Measures

We selected a sample of cognitive, motor, behavioral, functional and imaging measures from 

the PREDICT-HD battery that have shown sensitivity to disease progression [12–17]. 

Measures from the Unified Huntington’s Disease Rating Scale [1] include total motor score, 

Stroop Color and Word Test [18], and Symbol Digit Modalities Test (SDMT) [19]. 

Behavioral variables include the total and subscale scores from the Frontal Systems 

Behavioral Scale (FrSBe) [20] and the Symptom Check List 90 (SCL-90-R) [21]. Functional 

variables included the total scores from the Everyday Cognition (ECog) scale [22], and the 

World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) [23]. Both 

participant-rated and companion-rated versions of the WHODAS and ECog are included to 

account for the possibility of decreased reliability of self-reported functioning resulting from 

disease progression [13–17]. We also included MRI measures for striatal volume processed 

using BRAINS image processing software [24].

Participant stratification and analysis aims

Progression groups were defined by CAG repeat length according to American College of 

Medical Genetics (ACMG) and American Society of Human Genetics (ASHG) [3] 

guidelines as follows: NA ≤ 26, IA 27–35, RP 36–39, and FP ≥ 40. The primary aim of this 

analysis was to examine differences between IA individuals and the NA group, with 

particular attention paid to cognitive and behavioral manifestations. Based on previous 

studies that support a behavioral subphenotype for the IA range, our hypothesis was that IA 

individuals would demonstrate worse average performance compared to the NA group with 

respect to behavioral measures. In PREDICT-HD analyses, IA individuals are usually 

grouped with controls [25].

Statistical analyses

All analyses were performed using the statistical software program R (version 3.1.2), and 

maximum likelihood was used throughout. First, sample sizes, measures of centrality, and 

measures of variability were obtained for the demographic variables age (at baseline) and 

years of education. Analysis of variance (ANOVA) F-tests were used to determine whether 

an overall statistically significant difference in means existed between groups. Pearson’s chi-

squared test was used to assess differences in gender proportion by group. Second, linear 

mixed models (LMMs) [26] were used for the longitudinal analysis. Each outcome of 

interest was analyzed separately, using the following predictors: time, group, and interaction 

between time and group. We included the covariates age (at baseline), years of education, 

and gender to control for these variables. Time was measured as duration of follow-up for all 
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longitudinal analyses. The intercept corresponds to the outcome measures at baseline, and 

the slope corresponds to the annual rate of change in the outcome.

Three models were assessed for each outcome: Model 1 = no baseline group differences or 

group differences over time; Model 2 = baseline group differences but no group differences 

over time; and Model 3 = baseline group differences and group differences over time. The 

Akaike information criterion (AIC) [27] was used to select the optimal model from among 

the three. The AIC is known for its ability to select a model that balances the two competing 

goals of model building: adequacy of the model fit to the observed data and model 

parsimony (simplicity). LMMs yield unbiased parameter estimates under the assumption 

that the missing data are ignorable [28]. After the optimal model was selected, t-tests were 

carried out to assess differences at baseline and over time between the IA and NA groups, 

RP and NA groups, and FP and NA groups.

RESULTS

Demographics

Our dataset consisted of 1379 participants in four ranges according to their longest CAG 

repeat allele: 280 were in the NA range, 21 were in the IA range, 88 were in the RP range, 

and 990 were in the FP range. Demographic data, including group, gender, years of 

education, and age are presented in Table 1. Statistical evidence at the 0.05 level concluded 

that there were differences in mean age at baseline and years of education between groups, 

with all p-values < 0.0001. Therefore, age (at baseline) and years of education, along with 

gender, were controlled for in the LMM analyses. Data on years of education were not 

available for one IA and four FP participants. Consistent with the female/male ratio in both 

the COHORT and PHAROS studies, our sample was approximately two-thirds female. 

Previous data indicates that more women than men complete HD genetic testing [29]. The 

PREDICT-HD sample consisted of individuals who had already been tested and thus our 

female/male ratio is representative of the population who underwent testing.

Longitudinal analysis via LMMs

Table 2 presents results from the LMMs (estimates, t-test statistics, and model fit) via the 

process described above. Model 3 (both baseline and longitudinal differences between 

groups) was the best fitting model for most of the outcome variables. Model 1 (no baseline 

or longitudinal differences) was the best fitting model for disinhibition, and Model 2 

(baseline differences but no longitudinal differences) was the best fitting model for several 

measures. However, there were no statistically significant differences in baseline or 

longitudinal outcomes between the IA and NA groups. The vast majority of significant 

findings were due to differences between the NA and FP groups, indicated by t-test results 

with absolute magnitude of ≥ 2 (these appear in bold in Table 2). These findings are 

consistent with already published data from the PREDICT-HD study [15, 16].

In order to aid in digesting the large number of results, Figure 1 provides a graphical 

representation of p-values from the statistical tests conducted in Table 2. On the x-axis, p-

values are plotted separately for the differences between the three groups—IA, RP, and FP—
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compared with the controls on the 31 outcome variables examined (y-axis). Baseline 

differences are plotted using solid lines, while longitudinal differences are plotted using 

dashed lines. Horizontal dashed lines are plotted at y = 0.05 in order to aid in assessing 

significance of results. Model 1 was optimal for one outcome (FrSBe disinhibition) and this 

outcome is the last variable listed on the x-axis (see Figure 1 key). The dashed line for the 

slope disappears as variable number increases. This is due to the fact that the optimal model 

(selected via the AIC) for some variables did not include group differences over time. Also, 

as shown in Table 2 and noted above, Model 1 was the best fit for FrSBe disinhibition, (i.e., 

no intercept or slope comparisons available). Therefore, no points are plotted for this 

variable in Figure 1, which explains the gap at the final variable in Figure 1. In summary, 

Figure 1 provides graphical demonstration of the lack of significant differences between the 

IA and the NA group across all measures.

While there were no significant baseline or longitudinal differences between the IA and NA 

group, our data do indicate evidence of gradient effects on several measures, including 

behavioral measures. Gradient effects are defined by evidence of increasing impairment or 

dysfunction from the NA group to the FP group (these appear in italics in Table 2). For 

instance, if considering a cognitive measure for which higher values are indicative of 

cognitive impairment, a gradient effect would be said to exist if the NA group had the lowest 

baseline mean (slope), followed by the IA group, then the RP group, and finally the FP 

group. Evidence of baseline gradient effects were found for participant-rated WHODAS, 

TMS, Beck Depression Inventory (BDI), SCL-90 obsessive compulsive scale, SCL-90 

depression subscale, SCL-90 anxiety subscale, SCL-90 hostility subscale, SCL-90 global 

severity index, SCL-90 positive symptom distress index, FrSBe executive subscale, and 

FrSBe total. Evidence of longitudinal gradient effects were found for Stroop Color and Word 

Test – color condition, Stroop Color and Word Test – interference condition, companion-

rated WHODAS, striatal volume, SCL-90 obsessive compulsive scale, participant-rated 

ECog memory, and companion-rated ECog language.

Figures 2, 3, and 4 provide visual representation of the longitudinal changes in three 

measures with known sensitivity to changes in prodromal HD: the SDMT, TMS, and striatal 

volume [15]. In these visual representations, those in the IA group show patterns of change 

similar to those in the NA group, while those in the RP group show patterns similar to those 

in the FP group.

DISCUSSION

This is the first known study to examine both baseline and longitudinal differences between 

IA and NA, RP, and FP allele ranges in a large sample. While we found evidence of baseline 

and longitudinal differences between the groups, we did not find evidence of differences 

between the IA group and the NA group. Most of the differences were between the FP and 

NA groups, with a few baseline and longitudinal differences between the RP and NA groups. 

Given the large number of outcome measures examined, we expected to find some 

significant differences between IA and NA groups, even if just by chance. Negative findings 

are consistent with current genetic testing guidelines that indicate persons in the IA range 
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are unaffected by the HD gene expansion [3]. However, it is possible that with a larger 

sample size of IA participants some of these differences would be significant.

Some researchers have postulated that environmental or genetic modifiers might cause some 

people within IA ranges to express a behavioral subphenotype, including increased 

depression, apathy, suicidal thoughts, suicide attempts, and history of psychiatric disease [6, 

11]. We did not find evidence to support a behavioral subphenotype for the IA group in our 

sample, although several baseline gradient effects were found in behavioral measures, 

including obsession, depression, anxiety, hostility, and global severity and positive symptom 

distress on the SCL-90. At the same time, significant baseline differences in the RP group 

compared to the NA group (shown in Figure 1) included two behavioral measures, 

depression (BDI) and hostility (SCL-90). The RP group also showed significant changes 

over time in longitudinal SDMT, companion-rated WHODAS, and striatal volume compared 

to the NA group. This suggests that even those in the RP range who do not display motor 

signs required for a definitive diagnosis of symptomatic HD exhibit some of the 

characteristics associated with manifest HD. Gradient effects are suggestive of a toxic gain-

of-function pathology in HD (i.e. pathology increases with increased CAG repeat length 

even if it does not meet diagnostic criteria for manifest HD). This is consistent with the 

findings for the RP group described above.

Longitudinal gradient effects were also present for frontal behaviors affecting executive 

function and total frontal behaviors score. However, the only longitudinal gradient effect for 

a behavioral measure that was observed was for SCL-90 obsessive compulsive scale. We did 

find the presence of increased baseline depression and hostility behavioral symptoms in the 

RP group compared to the IA and NA groups, which suggests that increased CAG length 

might be associated with behavioral changes even though they are not apparent in our IA 

sample. However, we did not find longitudinal differences between RP and NA groups on 

any behavioral measures.

Our data also showed longitudinal gradient effects for some cognitive outcomes (Table 2), 

including Stroop Color and Word Test – color and interference conditions, and participant-

rated ECog memory and companion-rated ECog language. The RP group showed a decline 

in performance compared to the NA group over time on SDMT. There were baseline 

gradient effects for the participant-rated WHODAS and longitudinal gradient effects for the 

companion-rated WHODAS. There was a baseline gradient effect for the TMS and 

longitudinal gradient effect for the striatal volume. Therefore, we have evidence of gradient 

effects across groups in all domains: behavioral, cognitive, functional, motor, and imaging. 

These findings could change with larger sample sizes for the IA and RP groups since 

phenotype expression is likely to be heterogeneous, even in the RP range [30].

The precise mechanism of neurological damage in HD is unclear, although it likely involves 

multiple processes [31]. Two proposed pathways include a cumulative damage model and a 

one-hit model The cumulative damage model is supported by the negative association 

between CAG length and age of onset. However, the one-hit model supports the 

phenomenon of a threshold for manifest HD at 36 CAG repeats. Although our data 

demonstrate gradient effects for several measures across the CAG length ranges, there still 
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appears to be a clear threshold for formal HD diagnosis at 36 repeats. Of course, disease 

pathology in HD could involve both cumulative damage and threshold effects [32], with 

increasing amounts of mutant protein overwhelming neuronal repair systems once it reaches 

a threshold accumulation [31].

Figures 2, 3, and 4 reinforce that participants in the IA group show patterns of change 

similar to those in the NA group, while those in the RP group show patterns similar to those 

in the FP group. Genetic counselors and clinicians encounter the issue of explaining the 

significance of CAG repeat lengths in the IA and RP ranges to individuals undergoing HD 

genetic testing. Indeed, subtle differences between the IA and the NA group are evident in 

Figures 2, 3, and 4. In Figure 2, the upward slope for performance by controls on the SDMT 

is indicative of practice effects [25]. The RP and FP groups show downward slopes 

indicative of cognitive impairment that overrides practice effects. While the IA group slope 

is slightly positive, it is flatter than the control group slope, which might indicate subtle 

cognitive changes that result in reduced ability to benefit from practice effects. In Figure 3, 

the slope for TMS is slightly negative, unlike the slopes for the RP and FP groups. Thus, the 

motor phenotype is not displayed by the IA group in our sample. Figure 4 shows that striatal 

volume decreases over time in all groups, which might be correlated with aging. While the 

slope in the IA is not significantly different from the control group, the striatal volume is 

slightly lower and a longitudinal gradient effect was evident in the data.

More data are needed before definitely stating that the IA range displays some of the 

changes associated with HD, including whether it might involve a behavioral subphenotype. 

We already have evidence that there are likely environmental and genetic factors that impact 

whether persons in the RP range develop manifest HD. Once we have more specific 

information regarding the factors that impact phenotype expression in the IA and RP ranges, 

it might become increasingly important to more accurately report the length of a person’s 

longest CAG repeat allele. Little attention is given in the literature to the issue of 

inconsistent reporting of CAG repeat lengths, which occurs in up to 51% of tests [33]. The 

ACMG/ASHG guidelines state that acceptable error rates for CAG repeat lengths is ± 2 

repeats for alleles with less than 50 repeats [3]. This error rate might not be acceptable for 

individuals at the edge of one of the repeat ranges. In the future, HD genetic testing might 

require a two-tier approach using an additional long-read sequencing platform such as 

PacBio [34, 35] for persons with CAG lengths in the equivocal ranges (i.e., within 2 CAG 

repeats of another range).

The major limitation of our findings is the small sample size of participants with CAG 

alleles in the IA and RP ranges compared to NA and FP groups. The 21 participants in our 

IA group represent 1.5% of our sample. This is not overly surprising considering that 

prevalence of IA in the general population is low, with estimates ranging from 1.9%–6% 

[36–38]. The RP group of 90 represents 6.4% of our sample. Previous studies indicate that 

the CAG repeat length in the general population is bimodal, with an average of 17 for those 

with longest alleles in the NA range and 41 in the FP range. CAG repeat lengths 28–38 are 

less common [11].
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A caveat to our analysis when comparing behavioral results from IA analyses in the 

COHORT and PHAROS studies with PREDICT-HD is that these three observational studies 

define case and control groups differently. In PREDICT-HD, all participants know their HD 

gene status prior to enrollment; cases are persons who tested positive for the HD gene 

expansion and controls are persons who tested negative. In COHORT, participants do not 

have to know their gene status to enroll and controls consist of spouses or caregivers. In 

PHAROS, all participants are at risk for HD but do not know their gene status; cases are 

positive for the gene expansion and controls are negative for the gene expansion. Therefore, 

it is reasonable to expect that behavioral outcomes might differ between at-risk individuals 

who know their gene status versus those who do not. There is evidence that persons who feel 

as though they will cope poorly with positive results self-select to not complete HD genetic 

testing [39]. Furthermore, genetic testing protocols and pretest counselling might screen out 

individuals who are more psychologically vulnerable [40]. Therefore, our sample, which 

only includes persons who have chosen to undergo testing for the HD gene expansion, might 

not be representative of all individuals at risk for HD in terms of psychological functioning. 

This could explain why we found less evidence of behavioral differences between those in 

the IA and the NA range than the studies that included participants who are blinded to their 

HD gene expansion status.

Conclusion

Our data compared baseline and longitudinal differences in cognitive, behavioral, functional, 

motor, and imaging outcomes across NA, IA, RP, and FP CAG range groups. We found 

evidence of baseline and longitudinal differences in the RP and FP groups compared to the 

NA group. We also found gradient effects on a number of measures across domains, 

supporting a cumulative damage effect for the CAG repeat expansion. On the other hand, 

only persons in the RP and FP ranges had outcome measure results significantly different 

from NA range participants, supporting a threshold phenomenon of HD pathology at 36 

CAG repeats. More data are needed to accurately characterize the IA subphenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Visualization for p-values comparing intermediate (IA), reduced penetrance (RP), and full 

penetrance (FP) groups to controls.
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Fig. 2. 
Plots of linear trends over time by group for Symbol Digit Modalities Test (SDMT) adjusted 

for age, gender and education.
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Fig. 3. 
Plots of linear trends over time by group for total motor score (TMS) adjusted for age, 

gender, and education.
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Fig. 4. 
Plots of linear trends over time by group for striatal volume adjusted for age, gender and 

education.
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Table 1

Demographic variables

Group n
%

Female

Years
education

mean*
(SD)

Years
education
median
[range] n

Age
(baseline)

mean*
(SD)

Age
median
[range]

Control 280 64 14.80
(2.59)

15.50
[8–20] 280 43.67

(11.95)

44.69
[19.15–
83.73]

IA 20 65 15.55
(2.42)

16.00
[12–20] 21 47.27

(10.42)

45.05
[24.21–
69.99]

RP 88 60 14.49
(2.70)

14.00
[8–20] 88 48.69

(11.45)

48.09
[20.80–
75.85]

FP 986 64 14.46
(2.60)

14.00
[8–20] 990 38.99

(9.91)

38.46
[18.11–
67.90]

IA = intermediate; RP = reduced penetrance; FP = full penetrance.
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