77 research outputs found
Passenger or Driver: Can Gene Expression Profiling Tell Us Anything about LINE-1 in Cancer?
LINE-1 retrotransposons are expressed in epithelial cancers but not normal adult tissues. Previously, we demonstrated repression of cell proliferation, migration, and invasion genes in L1-reverse transcriptase-inhibited T47D cells, while genes involved in cell projection, formation of vacuolar membranes, and intercellular junctions were upregulated. Extending this, we examined microarray data from L1-silenced and Efavirenz-treated T47D cells by Weighted Gene Correlation Network Analysis and literature mining. Hub genes in the most significant module comparing L1-silenced and untreated controls included HSP90AB2p, DDX39A, PANK2, MT1M, and LIMK2. HSP90AB2p is related to HSP90, a master regulator of cancer, cancer evolvability and chemo-resistance. DDX39A is a known cancer driver gene while PANK2 and MT1M affect multiple pathways. LIMK2 and SYBL1 impact actin cytoskeletal dynamics and the cofilin pathway, cancer cell motility, and the epithelial-to-mesenchymal transition. Also affected were signal transduction, HIF1 pathways, iron/redox metabolism, stress granules and cancer stem cell-related metabolic reprogramming and the eIF4F translation initiation complex. Hub genes in other modules, including BTRC, MDM2, and FBXW7, stabilize oncoproteins like MYC, p53, and NOTCH1 or reflect CXCL12âCXCR4 signalling. Our findings support mounting evidence that L1 activity is a cause, rather than a consequence of oncogenesis, with L1 affecting the formation of cancer stem cells
Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy
Tripleânegative breast cancer (TNBC) is an aggressive breast cancer subtype with poor survival outcomes. Currently, there are no targeted therapies available for TNBCs despite remarkable progress in targeted and immuneâdirected therapies for other solid organ malignancies. Poly (ADPâribose) polymerase inhibitors (PARPi) are effective anticancer drugs that produce good initial clinical responses, especially in homologous recombination DNA repairâdeficient cancers. However, resistance is the rule rather than the exception, and recurrent tumors tend to have an aggressive phenotype associated with poor survival. Many efforts have been made to overcome PARPi resistance, mostly by targeting genes and effector proteins participating in homologous recombination that are overexpressed during PARPi therapy. Due to many known and unknown compensatory pathways, genes, and effector proteins, overlap and shared resistance are common. Overexpression of programmed cell deathâligand 1 (PDâL1) and cancer stem cell (CSC) sparing are novel PARPi resistance hypotheses. Although adding programmed cell deathâ1 (PDâ1)/PDâL1 inhibitors to PARPi might improve immunogenic cell death and be crucial for durable responses, they are less likely to target the CSC population that drives recurrent tumor growth. Lysineâspecific histone demethylaseâ1A and histone deacetylase inhibitors have shown promising activity against CSCs. Combining epigenetic drugs such as lysineâspecific histone demethylaseâ1A inhibitors or histone deacetylase inhibitors with PARPi/antiâPDâ1/PDâL1 is a novel, potentially synergistic strategy for priming tumors and overcoming resistance. Furthermore, such an approach could pave the way for the identification of new upstream epigenetic and genetic signatures.This work was supported by the National Health and Medical
Research Council (Grant ID APP1068065) and the UC Deepwater
Scholarship (TP)
Microsatellite Instability in Mouse Models of Colorectal Cancer
Microsatellite instability (MSI) is caused by DNA mismatch repair deficiency and is an important prognostic and predictive biomarker in colorectal cancer but relatively few studies have exploited mouse models in the study of its clinical utility. Furthermore, most previous studies have looked at MSI in the small intestine rather than the colon of mismatch repair deficient Msh2-knockout (KO) mice. Here we compared Msh2-KO, p53-KO, and wild type (WT) mice that were treated with the carcinogen azoxymethane (AOM) and the nonsteroidal anti-inflammatory drug sulindac or received no treatment. The induced tumors and normal tissue specimens from the colon were analysed with a panel of five mononucleotide repeat markers. MSI was detected throughout the normal colon in untreated Msh2-KO mice and this involved contraction of the repeat sequences compared to WT. The markers with longer mononucleotide repeats (37â59) were the most sensitive for MSI while the markers with shorter repeats (24) showed only minor change. AOM exposure caused further contraction of the Bat37 and Bat59 repeats in the distal colon of Msh2-KO mice which was reversed by sulindac. Thus AOM-induced carcinogenesis is associated with increased instability of mononucleotide repeats in the colon of Msh2-KO mice but not in WT or p53-KO mice. Chemoprevention of these tumors by sulindac treatment reversed or prevented the increased MSI
Bushfires and Mothersâ Mental Health in Pregnancy and Recent Post-Partum
Background: The compounding effects of climate change catastrophes such as bushfires and pandemics impose significant burden on individuals, societies, and their economies. The enduring effects of such syndemics on mental health remain poorly understood, particularly for at-risk populations (e.g., pregnant women and newborns). The aim of this study was to investigate the impact of direct and indirect exposure to the 2019/20 Australian Capital Territory and South-Eastern New South Wales bushfires followed by COVID-19 on the mental health and wellbeing of pregnant women and mothers with newborn babies. Methods: All women who were pregnant, had given birth, or were within three months of conceiving during the 2019/2020 bushfires, lived within the catchment area, and provided consent were invited to participate. Those who consented were asked to complete three online surveys. Mental health was assessed with the DASS-21 and the WHO-5. Bushfire, smoke, and COVID-19 exposures were assessed by self-report. Cross-sectional associations between exposures and mental health measures were tested with hierarchical regression models. Results: Of the women who participated, and had minimum data (n = 919), most (>75%) reported at least one acute bushfire exposure and 63% reported severe smoke exposure. Compared to Australian norms, participants had higher depression (+12%), anxiety (+35%), and stress (+43%) scores. Women with greater exposure to bushfires/smoke but not COVID-19 had poorer scores on all mental health measures. Conclusions: These findings provide novel evidence that the mental health of pregnant women and mothers of newborn babies is vulnerable to major climate catastrophes such as bushfires.</p
Dichloroacetate prevents cisplatin-induced nephrotoxicity without compromising cisplatin anticancer properties
Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin
Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation through NEK7 Deglutathionylation
The NLRP3 inflammasome is a cytosolic complex sensing phagocytosed material and various damage-associated molecular patterns, triggering production of the pro-inflammatory cytokines interleukin-1 beta (IL)-1ÎČ and IL-18 and promoting pyroptosis. Here, we characterize glutathione transferase omega 1-1 (GSTO1-1), a constitutive deglutathionylating enzyme, as a regulator of the NLRP3 inflammasome. Using a small molecule inhibitor of GSTO1-1 termed C1-27, endogenous GSTO1-1 knockdown, and GSTO1-1â/â mice, we report that GSTO1-1 is involved in NLRP3 inflammasome activation. Mechanistically, GSTO1-1 deglutathionylates cysteine 253 in NIMA related kinase 7 (NEK7) to promote NLRP3 activation. We therefore identify GSTO1-1 as an NLRP3 inflammasome regulator, which has potential as a drug target to limit NLRP3-mediated inflammation.We would like to acknowledge the following grants: the National Health and Medical Research Council of Australia (NHMRC) is thanked for Project Grant APP1124673 to P.G.B., M.G.C., and L.A.J.O.; Principal
Research Fellowship 1117602 to J.B.B.; and NHMRC Project Grant APP1156455 to J.B.B., P.G.B., and M.G.C. The OâNeill laboratory acknowledges the following grant support: European Research Council (ECFP7-ERC-MICROINNATE) and Science Foundation Ireland Investigator Award (SFI 12/IA/1531)
Routine use of ancillary investigations in staging diffuse large B-cell lymphoma improves the International Prognostic Index (IPI)
<p>Abstract</p> <p>Background</p> <p>The International Prognostic Index (IPI) is used to determine prognosis in diffuse large B-cell lymphoma (DLBCL). One of the determinants of IPI is the stage of disease with bone marrow involvement being classified as stage IV. For the IPI, involvement on bone marrow is traditionally defined on the basis of histology with ancillary investigations used only in difficult cases to aid histological diagnosis. This study aimed to determine the effect of the routine use of flow cytometry, immunohistochemistry and molecular studies in bone marrow staging upon the IPI.</p> <p>Results</p> <p>Bone marrow trephines of 156 histologically proven DLBCL cases at initial diagnosis were assessed on routine histology, and immunohistochemistry using two T-cell markers (CD45RO and CD3), two B-cell markers (CD20 and CD79a) and kappa and lambda light chains. Raw flow cytometry data on all samples were reanalysed and reinterpreted blindly. DNA extracted from archived paraffin-embedded trephine biopsy samples was used for immunoglobulin heavy chain and light chain gene rearrangement analysis. Using immunophenotyping (flow cytometry and immunohistochemistry), 30 (19.2%) cases were upstaged to stage IV. A further 8 (5.1%) cases were upstaged using molecular studies. A change in IPI was noted in 18 cases (11.5%) on immunophenotyping alone, and 22 (14.1%) cases on immunophenotyping and molecular testing. Comparison of two revised IPI models, 1) using immunophenotyping alone, and 2) using immunophenotyping with molecular studies, was performed with baseline IPI using a Cox regression model. It showed that the revised IPI model using immunophenotyping provides the best differentiation between the IPI categories.</p> <p>Conclusion</p> <p>Improved bone marrow staging using flow cytometry and immunohistochemistry improves the predictive value of the IPI in patients with DLBCL and should be performed routinely in all cases.</p
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCMâ/â patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
- âŠ