600 research outputs found

    To get the prices right for food: a “Gerschenkron state” versus the market in reforming China, 1979–2006

    Get PDF
    This article provides an empirical assessment of China’s state price policies and strategies in relation to (1) market-rebuilding for the agricultural sector and (2) food security for China.1 It traces main changes in government grain pricing, urban food subsidies, grain procurement and the administrative control over food circulation from 1979 to 2006 in a bid to transfer a non-market economy to a market one, commonly known as the post-Mao reforms

    Getting food prices right: the state versus the market in reforming China, 1979–2006

    Get PDF
    This article examines the Chinese state's food-market-rebuilding policies during its gradual reforms (1979–2006). To this end, we analyse government policies regarding food pricing, subsidies and procurement funds, and construct a policy implementation data set. Our findings indicate that fluctuations in China's food output were unidirectionally caused by the “visible hand” of China's reformist state, which aimed to guide the economy away from an administration-planned economy towards a price-based market system

    Inference of Surface Membrane Factors of HIV-1 Infection through Functional Interaction Networks

    Get PDF
    Background: HIV infection affects the populations of T helper cells, dendritic cells and macrophages. Moreover, it has a serious impact on the central nervous system. It is yet not clear whether this list is complete and why specifically those cell types are affected. To address this question, we have developed a method to identify cellular surface proteins that permit, mediate or enhance HIV infection in different cell/tissue types in HIV-infected individuals. Receptors associated with HIV infection share common functions and domains and are involved in similar cellular processes. These properties are exploited by bioinformatics techniques to predict novel cell surface proteins that potentially interact with HIV. METHODOLOGY/PRINCIPAL FINDINGS: We compiled a set of surface membrane proteins (SMP) that are known to interact with HIV. This set is extended by proteins that have direct interaction and share functional similarity. This resulted in a comprehensive network around the initial SMP set. Using network centrality analysis we predict novel surface membrane factors from the annotated network. We identify 21 surface membrane factors, among which three have confirmed functions in HIV infection, seven have been identified by at least two other studies, and eleven are novel predictions and thus excellent targets for experimental investigation. CONCLUSIONS: Determining to what extent HIV can interact with human SMPs is an important step towards understanding patient specific disease progression. Using various bioinformatics techniques, we generate a set of surface membrane factors that constitutes a well-founded starting point for experimental testing of cell/tissue susceptibility of different HIV strains as well as for cohort studies evaluating patient specific disease progression

    CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry.

    Get PDF
    Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process

    Epithelial cell–derived secreted and transmembrane 1a signals to activated neutrophils during pneumococcal pneumonia

    Full text link
    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-kB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia

    Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia

    Get PDF
    Influenza and other respiratory viral infections are the most common type of acute respiratory infection. Viral infections predispose patients to secondary bacterial infections, which often have a more severe clinical course. The mechanisms underlying post-viral bacterial infections are complex, and include multifactorial processes mediated by interactions between viruses, bacteria, and the host immune system. Studies over the past 15 years have demonstrated that unique microbial communities reside on the mucosal surfaces of the gastrointestinal tract and the respiratory tract, which have both direct and indirect effects on host defense against viral infections. In addition, antiviral immune responses induced by acute respiratory infections such as influenza are associated with changes in microbial composition and function (“dysbiosis”) in the respiratory and gastrointestinal tract, which in turn may alter subsequent immune function against secondary bacterial infection or alter the dynamics of inter-microbial interactions, thereby enhancing the proliferation of potentially pathogenic bacterial species. In this review, we summarize the literature on the interactions between host microbial communities and host defense, and how influenza, and other acute respiratory viral infections disrupt these interactions, thereby contributing to the pathogenesis of secondary bacterial infections

    Applying the Coulomb Failure Function with an optimally oriented plane to the 2008 Mw 7.9 Wenchuan earthquake triggering

    Get PDF
    The Coulomb failure function (CFF) quantitatively describes static stress changes in secondary faults near the source fault of an earthquake. CFF can be employed to monitor how static stress transfers and then shed some light on the probability of successive events occurring around a source fault. In this paper we focus on the CFF and particularly on optimally oriented planes. We present a unified model to determine an optimally oriented plane and its corresponding Coulomb stress, then apply the model to the 2003 Mw 6.6 Bam (Iran) earthquake and the 2008 Mw 7.9 Wenchuan (China) earthquake, thereby checking its effectiveness. Our results show that spatial correlation between positive Coulomb stress changes and aftershocks are, for the 2003 Bam earthquake, 47.06% when elastic Coulomb stress changes are resolved on uniform planes and 87.53% when these are resolved on optimally oriented planes at depth; for the 2008 Wenchuan earthquake the correlations are 45.68% and 58.20%, respectively. It is recommended that account be taken of optimally oriented planes when drawing a Coulomb stress map for analyzing earthquake triggering effects

    Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations

    Get PDF
    The oxygen reduction reaction by decamethylferrocene (DMFc), triggered by hydrophilic metallic cations behaving as Lewis acids towards water molecules in a homogeneous organic phase reaction, was investigated using cyclic voltammetry at the water|1,2-dichloroethane (w|DCE) interface. Simulated CVs, prepared through a facile 1-dimensional geometry in COMSOL Multi-physics software and incorporating interfacial and homogeneous reactions, were compared to experimental ones in order to elucidate the kinetics, thermodynamics, and viability of the proposed mechanism. The predominant O2 reduction reactions were proposed to occur in bulk organic phase, or in the vicinity of the w|DCE interface; six organic phase reactions were put forward. The first step was hydrolysis made possible through polarization of the O−H bond of water molecules available in the cations hydration shell. The metal ion behaves as a Lewis acid coordinating to the oxygen and weakening the O−H bond, making the proton more acidic, thereby facilitating attack by decamethylferrocene (DMFc) to form DMFc-H+. DMFc-H+ then participates in dioxygen reduction, generating the O2H• radical species and DMFc+. Afterwards, the radical oxidizes another equivalent of DMFc to produce O2H−, that can then abstract a proton from the metal ions hydration sphere to generate hydrogen peroxide. The disproportionation of O2H− and the ion-pair formation of Li+ and OH− make up the other two reactions. The CV analysis was based on two curve features; the DMFc+ transfer wave and the positive limit of the polarizable potential window – the edge of scan potential profile – including the metal ion return peak. The goal of this article is to determine the kinetic/thermodynamic aspects of this mechanism from the experimental electrochemical data
    corecore