60 research outputs found

    Traffic-Related Air Pollution and Stress: Effects on Asthma

    Get PDF

    Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh

    Get PDF
    AbstractImpacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7μg/m3) than winter (18.9±13.2μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities – particularly cigarette smoking – may play a larger role in shaping indoor exposures

    Chronic Conditions and Pediatric Healthcare Utilization during Warm Weather Days in New York City

    Get PDF
    Background: While literature on the overall health burden of high temperature exposures on children continues to grow, little is known about whether children with chronic diseases are particularly vulnerable to the adverse health impacts of extreme heat. Methods: We used New York Statewide Planning and Research Cooperative System (SPARCS) data on children aged 0-18 years admitted to emergency department and hospitals during the warm months (May-September) from 2005 to 2011. We identified children with specific chronic diseases or conditions that plausibly enhance susceptibility to heat (i.e., asthma, obesity, cerebral palsy, cystic fibrosis, sickle cell disease, sickle cell trait, and mental health disorders). We also identified children with a complex chronic condition (CCC) defined using the Feudtner classification scheme. We used a time-stratified, case-crossover design and conditional logistic regression models, adjusted for mean daily relative humidity, to derive estimates of excess risk of pediatric admissions associated with daily maximum temperature (Tmax). Results: There were 2,480,556 pediatric cases in New York City during the study period; 90.8% (n = 2,252,550) occurred in emergency departments; chronic conditions appeared in 0.1% (sickle cell trait) up to 8.3% (asthma). The average Tmax was 80.3F (range 50F-104F). While we found an increase in overall pediatric admissions associated with Tmax, we found decreased risks among children with some specific categories of chronic conditions, including asthma, obesity, and mental health disorders. For children with CCC, temperature was associated with increased admissions when considering only the summer months. Conclusions: We found that children with chronic conditions show a complex pattern of risk of healthcare utilization. With further replication, our findings can help inform preparedness of the health system for prevention measures

    Temperature and mental health–related emergency department and hospital encounters among children, adolescents and young adults

    Get PDF
    Abstract Aims We examine the association between high ambient temperature and acute mental health-related healthcare encounters in New York City for children, adolescents and young adults. Methods This case-crossover study included emergency department (ED) visits and hospital encounters with a primary diagnosis of any mental health disorder during warm-season months (June–August) in New York City from 2005 to 2011 from patients of three age groups (6–11, 12–17 and 18–25 years). Using a distributed lag non-linear model over 0–5 lag days, by fitting a conditional logistic regression for each age group, we calculated the cumulative odds ratios of mental health encounters associated with an elevated temperature. Analyses were stratified by race/ethnicity, payment source and mental health categories to elucidate vulnerable subpopulations. Results In New York City, there were 82,982 mental health–related encounters for young people aged 6 to 25 years during our study period months. Elevated temperature days were associated with higher risk of mental health–related ED and hospital encounters for the 6- to 11-year-olds (odds ratio [OR]: 1.28, 95% confidence interval [CI]: 1.13–1.46), for the 12- to 17-year-olds (OR: 1.17, 95% CI: 1.09–1.25) and for the 18- to 25-year-olds (OR: 1.09, 95% CI: 1.04–1.15). Children with reaction disorders, adolescents with anxiety and bipolar disorders, young adults with psychosis and reaction disorders and Black and non-Hispanic children and adolescents showed vulnerability to elevated temperature. Conclusions We found that elevated ambient temperatures were associated with acute mental health ED or hospital encounters across childhood, adolescence and young adulthood

    A Framework for Examining Social Stress and Susceptibility to Air Pollution in Respiratory Health

    Get PDF
    Objective: There is growing interest in disentangling the health effects of spatially clustered social and physical environmental exposures and in exploring potential synergies among them, with particular attention directed to the combined effects of psychosocial stress and air pollution. Both exposures may be elevated in lower-income urban communities, and it has been hypothesized that stress, which can influence immune function and susceptibility, may potentiate the effects of air pollution in respiratory disease onset and exacerbation. In this paper, we attempt to synthesize the relevant research from social and environmental epidemiology, toxicology, immunology, and exposure assessment to provide a useful framework for environmental health researchers aiming to investigate the health effects of environmental pollution in combination with social or psychological factors. Data synthesis: We review the existing epidemiologic and toxicologic evidence on synergistic effects of stress and pollution, and then describe the physiologic effects of stress and key issues related to measuring and evaluating stress as it relates to physical environmental exposures and susceptibility. Finally, we identify some of the major methodologic challenges ahead as we work toward disentangling the health effects of clustered social and physical exposures and accurately describing the interplay among these exposures. Conclusions: There is still tremendous work to be done toward understanding the combined and potentially synergistic health effects of stress and pollution. As this research proceeds, we recommend careful attention to the relative temporalities of stress and pollution exposures, to nonlinearities in their independent and combined effects, to physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial distributions of social and physical exposures at multiple geographic scales

    Synergistic Effects of Traffic-Related Air Pollution and Exposure to Violence on Urban Asthma Etiology

    Get PDF
    Background: Disproportionate life stress and consequent physiologic alteration (i.e., immune dysregulation) has been proposed as a major pathway linking socioeconomic position, environmental exposures, and health disparities. Asthma, for example, disproportionately affects lower-income urban communities, where air pollution and social stressors may be elevated. Objectives: We aimed to examine the role of exposure to violence (ETV), as a chronic stressor, in altering susceptibility to traffic-related air pollution in asthma etiology. Methods: We developed geographic information systems (GIS)–based models to retrospectively estimate residential exposures to traffic-related pollution for 413 children in a community-based pregnancy cohort, recruited in East Boston, Massachusetts, between 1987 and 1993, using monthly nitrogen dioxide measurements for 13 sites over 18 years. We merged pollution estimates with questionnaire data on lifetime ETV and examined the effects of both on childhood asthma etiology. Results: Correcting for potential confounders, we found an elevated risk of asthma with a 1-SD (4.3 ppb) increase in NO2 exposure solely among children with above-median ETV [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.14–2.33)]. Among children always living in the same community, with lesser exposure measurement error, this association was magnified (OR = 2.40; 95% CI, 1.48–3.88). Of multiple exposure periods, year-of-diagnosis NO2_2 was most predictive of asthma outcomes. Conclusions: We found an association between traffic-related air pollution and asthma solely among urban children exposed to violence. Future studies should consider socially patterned susceptibility, common spatial distributions of social and physical environmental factors, and potential synergies among these. Prospective assessment of physical and social exposures may help determine causal pathways and critical exposure periods
    • …
    corecore