8 research outputs found

    SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On

    Get PDF
    Image-based virtual try-on for fashion has gained considerable attention recently. The task requires trying on a clothing item on a target model image. An efficient framework for this is composed of two stages: (1) warping (transforming) the try-on cloth to align with the pose and shape of the target model, and (2) a texture transfer module to seamlessly integrate the warped try-on cloth onto the target model image. Existing methods suffer from artifacts and distortions in their try-on output. In this work, we present SieveNet, a framework for robust image-based virtual try-on. Firstly, we introduce a multi-stage coarse-to-fine warping network to better model fine-grained intricacies (while transforming the try-on cloth) and train it with a novel perceptual geometric matching loss. Next, we introduce a try-on cloth conditioned segmentation mask prior to improve the texture transfer network. Finally, we also introduce a dueling triplet loss strategy for training the texture translation network which further improves the quality of the generated try-on results. We present extensive qualitative and quantitative evaluations of each component of the proposed pipeline and show significant performance improvements against the current state-of-the-art method.Comment: Accepted at IEEE WACV 202

    RetroKD : Leveraging Past States for Regularizing Targets in Teacher-Student Learning

    Get PDF
    Several recent works show that higher accuracy models may not be better teachers for every student, and hence, refer this problem as student-teacher "knowledge gap". Further, they propose techniques, which, in this paper, we discuss are constrained to certain pre-conditions: 1). Access to Teacher Model/Architecture 2). Retraining Teacher Model 3). Models in Addition to Teacher Model. Being well known that for a lot of settings, these conditions may not hold true challenges the applicability of such approaches. In this work, we propose RetroKD, which smoothes out the logits of a student network by leveraging students' past state logits with the ones from the teacher. By doing so, we hypothesize that the present target will no longer be as hard as the teacher target and not as more uncomplicated as the past student target. Such regularization on learning the parameters alleviates the needs as required by other methods. Our extensive set of experiments comparing against the baselines for CIFAR 10, CIFAR 100, and TinyImageNet datasets and a theoretical study further help in supporting our claim. We performed crucial ablation studies such as hyperparameter sensitivity, the generalization study by showing the flatness on loss landscape and feature similarly with teacher network

    SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On

    Get PDF
    Image-based virtual try-on for fashion has gained considerable attention recently. The task requires trying on a clothing item on a target model image. An efficient framework for this is composed of two stages: (1) warping (transforming) the try-on cloth to align with the pose and shape of the target model, and (2) a texture transfer module to seamlessly integrate the warped try-on cloth onto the target model image. Existing methods suffer from artifacts and distortions in their try-on output. In this work, we present SieveNet, a framework for robust image-based virtual try-on. Firstly, we introduce a multi-stage coarse-to-fine warping network to better model fine grained intricacies (while transforming the try-on cloth) and train it with a novel perceptual geometric matching loss. Next, we introduce a try-on cloth conditioned segmentation mask prior to improve the texture transfer network. Finally, we also introduce a duelling triplet loss strategy for training the texture translation network which further improves the quality of generated try-on result. We present extensive qualitative and quantitative evaluations of each component of the proposed pipeline and show significant performance improvements against the current state-of-the-art method. © 2020 IEEE

    Introducing v0.5 of the AI Safety Benchmark from MLCommons

    Get PDF
    This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark

    Introducing v0.5 of the AI Safety Benchmark from MLCommons

    Get PDF
    This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark

    Robust Cloth Warping via Multi-Scale Patch Adversarial Loss for Virtual Try-On Framework

    Get PDF
    With the rapid growth of online commerce, image-based virtual try-on systems for fitting new in-shop garments onto a person image presents an exciting opportunity to deliver interactive customer experience. Current state-of-the-art methods achieve this in a two-stage pipeline, where the first stage transforms the in-shop cloth into fitting the body shape of the target person and the second stage employs an image composition module to seamlessly integrate the transformed in-shop cloth onto the target person image. In the present work, we introduce a multi-scale patch adversarial loss for training the warping module of a state-of-the-art virtual try-on network. We show that the proposed loss produces robust transformation of clothes to fit the body shape while preserving texture details, which in turn improves image composition in the second stage. We perform extensive evaluations of the proposed loss on the try-on performance and show significant performance improvement over the existing state-of-the-art method

    Introducing v0.5 of the AI Safety Benchmark from MLCommons

    Get PDF
    This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark
    corecore