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ABSTRACT
Several recent works show that higher accuracy models may not
be better teachers for every student, and hence, refer this problem
as student-teacher “knowledge gap". Further, they propose tech-
niques, which, in this paper, we discuss are constrained to certain
pre-conditions: 1). Access to Teacher Model/Architecture 2). Re-
training Teacher Model 3). Models in Addition to Teacher Model.
Being well known that for a lot of settings, these conditions may
not hold true challenges the applicability of such approaches.
In this work, we propose RetroKD , which smoothes out the logits of
a student network by leveraging students’ past state logits with the
ones from the teacher. By doing so, we hypothesize that the present
target will no longer be as hard as the teacher target and not as
more uncomplicated as the past student target. Such regularization
on learning the parameters alleviates the needs as required by other
methods. Our extensive set of experiments comparing against the
baselines for CIFAR 10, CIFAR 100, and TinyImageNet datasets and
a theoretical study further help in supporting our claim. We per-
formed crucial ablation studies such as hyperparameter sensitivity,
the generalization study by showing the flatness on loss landscape
and feature similarly with teacher network.

CCS CONCEPTS
• Computing Methodologies→Machine Learning; • Comput-
ing Methodologies-Artificial Intelligence;

KEYWORDS
Knowledge Distillation, Regularization, Past States

∗Both authors contributed equally to this research.
†Work done while the author was student at IIT Hyderabad

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODS-COMAD 2023, January 4–7, 2023, Mumbai, India
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9797-1/23/01. . . $15.00
https://doi.org/10.1145/3570991.3571014

ACM Reference Format:
Surgan Jandial, Yash Khasbage, Arghya Pal, Balaji Krishnamurthy, and Vi-
neeth Balasubramanian. 2023. RetroKD : Leveraging Past States for Reg-
ularizing Targets in Teacher-Student Learning. In 6th Joint International
Conference on Data Science & Management of Data (10th ACM IKDD CODS
and 28th COMAD) (CODS-COMAD 2023), January 4–7, 2023, Mumbai, India.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3570991.3571014

1 INTRODUCTION
From its inception in Hinton’s seminal paper [15], Knowledge Dis-
tillation (KD) helps to compress, miniaturize, and transfer the model
parameters of deeper and wider deep learning models; those other-
wise require huge computational resources and time, which severely
poses challenges to their deployment. The information within the
high-capacity teacher network, known as “dark knowledge” [15]
in common parlance, is distilled to a low-capacity student network
with a view that the student network will perform similar to the
teacher network but with a low-capacity. To this end, the student is
trained with a compound loss that comprised of the student’s logit
on the main task and a KD loss to emulate the behaviour of the
teacher. Choosing the appropriate hyperparameters that balance
the student’s logit and the KD loss seems simple, but is a crucial
active area of research in KD.

The classical methods provide more emphasis to the KD loss with
the belief that a well-trained teacher network having high perfor-
mance on a task will eventually help to improve the performance of
the student network. To some extent, this intuitively led to a belief
that teacher accuracy increases with their increasing size and so is
their distilling ability. Interestingly, works such as [5, 27] provide
evidence that such a hypothesis, when it comes to generalization,
does not always hold true. What they show is that the student
network does not benefit much from the high performing teacher
as (i) labels from the teacher start becoming too complex and the
student being a smaller network cannot absorb knowledge from
the same; and (ii) the softmax output of the teacher class logits is
very high class-probability for the correct class and almost zero for
other classes. This does not add much information to the student
network from the class labels of the student network. This capacity
difference is however referred to as the “knowledge gap” between
student and teacher by [27].

To mitigate the knowledge gap, the more recent work [5] pro-
posed to retrain the teacher model while optimizing the student
network. The [20] leverages KD loss from checkpoints at different
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Figure 1: Visual representation for RetroKD . a)Standard KD is the framework mentioned in [15] The logits from Teacher (green
box) are matched with logits of Student (red box). After 𝑇𝑤𝑎𝑟𝑚𝑢𝑝 number of steps, we add the b) Ours (RetroKD ) regularization
to standard KD. The logits from Past Student (faded red box) and Teacher are composed using OCF 𝑓𝑐 , to obtain regularized
teacher logits 𝑧𝑡,𝑟𝑒𝑔.

Method OTL NAT NAAM
Teacher Assistant KD [27] ✗ ✓ ✗

Early Stopped KD [5] ✗ ✗ ✓

Route Constrained Optimization [20] ✗ ✗ ✓

Base KD [15] ✓ ✓ ✓

Noisy Teacher [36] ✓ ✓ ✓

RetroKD (ours) ✓ ✓ ✓

Table 1: Comparison of proposed method with recent meth-
ods w.r.t required settings. OTL = method works with ‘Only
converged Teacher’s Logits’; NAT = method does ‘Not re-
quire Access to Teacher’ (any of teacher architecture, teacher
model snapshots at multiple training iterations, or requir-
ing teacher model to retrain entirely); NAAM = method does
‘Not require Access to Additional trained teacher Models’. We
compare extensively against other methods that satisfy the
same desiderata.

time-steps of teacher training and hence requires to save weights
of different checkpoints. While [27] requires additional interme-
diate models to train the student leaving the crucial question of
what would be the appropriate intermediate model that is capable
of regularizing student. Such requirements, however, may seem
unrealistic for a huge span of real-world applications - especially
in the case of MLaaS (Machine-Learning-as-a-Service) [34] setting
or other privacy-preserving settings [38]. In addition to these limi-
tations, all the above methods are found to suffer from additional
resource/time overhead of retraining. The mentioned setting con-
trast is clearly illustrated in Table 1 where we are showing three
settings such as (i) methods work only when if there is access to the
converged teacher logits (OTL); (ii) methods those do not require
teacher access (NAT); and (iii) methods do not require additional
intermediate models (NAAM). Analyzing these cons from the above
discussion, one may conclude that for the settings where all that
is accessible or feasible is only converged teacher’s logits. Here,

the aforementioned techniques [5, 20, 27] cease to work. Hence,
calling for the emergence of methods to reduce the teacher-student
knowledge gap with the given teacher logits only.

Following a similar motivation, we propose RetroKD, a novel yet
simple method that leverages past student logits for regularizing
the training with teacher logits. We hypothesize that composing
the complex teacher logits with the ones from the past time steps
of student can be intuitively seen as relaxing the complex training
target by making it relatively similar to the student’s logits while
preserving the semantics from teacher targets. In other words, we
can say that since the above targets contain knowledge from the
past states, they are no longer as hard as the complex teacher tar-
gets. At the same time, since they contain knowledge from the
teacher, they are no longer as easier as the past student. Further,
we also periodically update the model state generating past state
logits to allow an increase in hardness of training targets over the
time steps, thereby insinuating curriculum progress in the targets
while training. All the above components can be said to play their
role in ensuring that the training targets are never too hard relative
to the student and at the same time are periodically progressing
as the student progresses. To compose previous logits with that of
the teacher, we propose the use of two functions in our approach
that are collectively referred to in the paper as Output Composi-
tion Functions (OCFs). Hence, RetroKD, by regularizing just with
the presence of teacher’s logits, alleviates any such limitations,
mentioned in Table 1.

To the best of our knowledge, this is the first such work that
leverages the past states of the student network in the way we do to
regularize the difficulty of student in learning from teacher targets.
Our contributions can be summarized as follows:
• We present a novel formulation, which we call RetroKD, that
demonstrates the usefulness of leveraging the past states
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of the student network in addition to the learning from the
teacher targets in KD training.
• We present two strategies which we refer as the Output
Composition Function (OCF) to compose teacher logits with
the logits from student’s past states.
• We perform detailed set of experiments on datasets such as
CIFAR 10, CIFAR 100 and TinyImageNet to demonstrate the
efficacy of our approach.
• We perform a comprehensive set of ablation studies includ-
ing hyperparameter sensitivity studies and analysis of loss
surface to study the usefulness of the proposed method.

2 RELATEDWORK
Knowledge Distillation: Knowledge Distillation (KD) is a tech-

nique of transferring knowledge from one neural network to an-
other, usually from a larger teacher network to a smaller student.
First displayed by [2], and then glorified by [15], in recent years,
several approaches with the aim of improving and rethinking KD
have been proposed. With the initial methods predominantly focus-
ing on distilling knowledge from logits, [35] realized that features
can also be distilled, hence, proposed a two-stage training proce-
dure to achieve the same. Succeeding on the feature distillation
idea, several other variants were also proposed: [43] proposed to
transfer attention maps, [42] defined the distilled knowledge from a
teacher network as the flow of the solution process (FSP), [31] pro-
posed “Relational Knowledge Distillation” that takes angle based
and distance-based mutual relations between the convolutional
activations to further optimize knowledge transfer. In all the above
methods, the authors often use teacher networks with larger ca-
pacity than the student. Different from these, efforts such as [9, 11]
utilize the same teacher-student architectures for distillation.
The methods described above perform well most of the time, how-
ever some works demonstrating the scenarios and reasons for their
failures also do exist. Building on similar lines, our work proposes
a regularization which, when added to the existing techniques, re-
laxes the difficulty of the student to learn.
The Knowledge Gap: Knowledge Distillation has often been a
method in which a larger (or higher accuracy) teacher distills knowl-
edge to a relatively smaller (or a lower accuracy) student. Hav-
ing said the above notion, this also intuitively led to a belief to
some extent that higher accuracy models make better teachers.
Holding true for most cases, the observation has been greatly con-
tradicted in the recent findings of [5, 27]. In some cases, due to
the teacher’s high certainty, the outputs may be highly devoid
of class-correlations, thus becoming as hard as one-hot labels. In
its own way, [25, 27] regard this phenomenon as the “knowledge
gap” between student and teacher. To mitigate, [5, 20, 27] proposed
their respective approaches, each of them focusing on the ways
to transmit the knowledge via an alternate (usually low complex-
ity/knowledge gap) teacher. The [27] introduced an intermediate
model, which they call TA (“Teacher Assistant”) model in-between
converged teacher and student reducing the knowledge. Instead of
introducing another model for training, [5] proposed to retrain the
teacher model and stop its training early when its outputs are yet
not converged. The above methods, by using relatively less complex
labels demonstrate the effect of hardness on student training. With

a similar direction, [20] proposed a curriculum training strategy
wherein instead of using a single converged teacher, they use sev-
eral intermediate checkpoints of the teacher. The detailed contrast
of the same is illustrated in Table 1. Our work, on the other hand,
albeit simple, alleviates the need for aforementioned constraints
and performs well in the same too.

Using Information from Past States:Neural network training
has always been thought of as progressive in nature, with parame-
ters continuously evolving over the time steps. The relative differ-
ence obtained in the outputs over the time steps can be attributed
to model making different mistakes at each of them. If used ade-
quately, this information can help effectively in regularizing further
training. The same has already been shown to help in several cases.
[1, 6, 18] utilize labels from the previous time steps in supervised
setting, [23, 39] utilize the temporal averages for consistency in
semi-supervised setting whereas [4, 13] leverage the past states
for visual representation learning. In the Knowledge Distillation
setting, certain works like [9, 19, 41] have been found to use the
model from the previous epoch/generation to train the later student.
However, all the above methods use the past models as the only
source of training information and hence the problem is completely
different from what we or any of the previous methods ([5, 27])
describe. Hence, making RetroKD first such approach to leverage
past states and regularize training with complex teacher targets.

3 METHODOLOGY
3.1 Background: Knowledge distillation
An ordinary training of Neural Network involves matching the
output logits of a network 𝑧 with the truth label 𝑦, using the Cross-
Entropy loss function.

L𝐶𝐸 = 𝐻 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧), 𝑦) (1)

Knowledge distillation is used to train a smaller Student Network
(𝑓𝑠 ) with the output of a large Pre-Trained Teacher Network (𝑓𝑡 )
along with the truth labels. The outputs from the teacher (teacher
labels) are seen to contain a lot of information in terms of class corre-
lations and uncertainty, therefore forcing the student to mimic these
distributions helps significantly in immersing these relationships
into them. Formally, given an input image 𝑥 , the output logits from
student and teacher can be written as 𝑧𝑠 = 𝑓𝑠 (𝑥) and 𝑧𝑡 = 𝑓𝑡 (𝑥)
respectively. The above logits are further softened via a tempera-
ture parameter (𝜏) and passed through softmax to obtain outputs
𝑦𝑠 and 𝑦𝑡 respectively:

𝑦𝑠 = softmax(𝑧𝑠/𝜏), 𝑦𝑡 = softmax(𝑧𝑡/𝜏) (2)

KD framework proposed adding a KD-loss to Eq. 1 for matching
teacher and student logits. The KD objective 𝐿𝐾𝐷 is further written
as:

L𝐾𝐷 = 𝜏2𝐾𝐿(𝑦𝑠 , 𝑦𝑡 ) (3)

Here, KL refers to the Kullback-Leibler Divergence and 𝜏 is the
temperature parameter, as mentioned above. Combining, Eq. 1 and
Eq. 3, the complete training objective can be written as

L = 𝛼L𝐾𝐷 + (1 − 𝛼)L𝐶𝐸 (4)
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Here 𝛼 is the weight balancing parameter combining the individual
training objectives.

3.2 RetroKD
Here, we formally describe our method. For clarity and ease of
understanding, we begin by defining the notations.
We consider a teacher network 𝑓𝑡 parameterized by \𝑡 as 𝑓𝑡 (·;\𝑡 )
and a student network 𝑓𝑠 parameterized by \𝑇𝑠 at time𝑇 as 𝑓𝑠 (·;\𝑇𝑠 ).
As a general notation, we use subscripts to distinguish between
teacher (t) and student (s), while the superscript will denote the
time-step (T) . Their outputs at time step 𝑇 are taken as 𝑧𝑇𝑠 ∈ 𝑅𝐶
and 𝑧𝑡 ∈ 𝑅𝐶 respectively (𝑅 is set of real numbers and 𝐶 is the
number of classes):

𝑧𝑇𝑠 = 𝑓𝑠 (𝑥 ;\𝑇𝑠 ), 𝑧𝑡 = 𝑓𝑡 (𝑥 ;\𝑡 ) (5)

We take the past state of student at time step (𝑇𝑝𝑎𝑠𝑡 < 𝑇 ) as
𝑓𝑠 (·;\

𝑇𝑝𝑎𝑠𝑡
𝑠 ) and obtain the logits 𝑧𝑇𝑝𝑎𝑠𝑡𝑠 :

𝑧
𝑇𝑝𝑎𝑠𝑡
𝑠 = 𝑓𝑠 (𝑥 ;\

𝑇𝑝𝑎𝑠𝑡
𝑠 ) (6)

The past state logits are then combined with teacher logits via
Output Composition Function (i.e., OCF, 𝑂𝑐 ) to obtain the Student-
Regularized Teacher Outputs 𝑧𝑡,𝑟𝑒𝑔 as:

𝑧𝑡,𝑟𝑒𝑔 = 𝑂𝑐 (𝑧𝑡 , 𝑧
𝑇𝑝𝑎𝑠𝑡
𝑠 ; _) (7)

where _ is a hyperparameter. During training, it is very likely that
outputs from very early stages of training may not be meaningful
enough, thus, maligning student targets. Hence, we propose using
a warmup period, 𝑇𝑤𝑎𝑟𝑚𝑢𝑝 to introduce RetroKD after a certain
number of steps of standard KD training. Now, the resultant teacher
supervision (𝑎𝑡 ) for time step T can be written as:

𝑎𝑡 =

{
𝑧𝑡 𝑇 < 𝑇𝑤𝑎𝑟𝑚𝑢𝑝
𝑧𝑡,𝑟𝑒𝑔 otherwise (8)

Following Eq. 4, the entire training objective L can be written as:

L = 𝛼L𝐾𝐷 (𝑧𝑇𝑠 /𝜏, 𝑎𝑡/𝜏) + (1 − 𝛼)L𝐶𝐸 (𝑧𝑇𝑠 , 𝑦) (9)

Here 𝑦 is the one-hot ground truth label and 𝛼 is the loss balancing
parameter between the two loss terms.

Composing Teacher-Past Student Logits. We suggest two kinds
of OCF: 1) Interpolation and 2) Random Logit Switch [8]. Here,
Interpolation refers to the standardmathematical operation of linear
interpolation, while Random Switch involves choosing either of
the student or teacher logits with a given probability.
Interpolation: OCF in this case is defined as

𝑂𝑐 (a, b; _) = _a + (1 − _)b

where _ is a parameter. Thus, given student’s past state logits,
𝑧
𝑇𝑝𝑎𝑠𝑡
𝑠 (𝑥) and teacher logits, 𝑧𝑡 (𝑥), we take a linear interpolating
factor (_) and obtain student-regularized teacher outputs 𝑧𝑡,𝑟𝑒𝑔 as:

𝑧𝑡,𝑟𝑒𝑔 (𝑥) = _𝑧
𝑇𝑝𝑎𝑠𝑡
𝑠 (𝑥) + (1 − _)𝑧𝑡 (𝑥) (10)

Random Logit Switch: OCF in this case is defined as

𝑂 (a, b;𝑝𝑡ℎ) =
{

a, 𝛽 < 𝑝𝑡ℎ, 𝛽 ∼ U(0, 1)
b 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Thus, given student’s past state logits 𝑧𝑇𝑝𝑎𝑠𝑡𝑠 (𝑥) and teacher logits
𝑧𝑡 (𝑥), we sample a number 𝛽 randomly from Uniform Distribution
U(0, 1) and then based on the threshold probability 𝛽 , the student-
regularized teacher outputs 𝑧𝑡,𝑟𝑒𝑔 are taken as:

𝑧𝑡,𝑟𝑒𝑔 =

{
𝑧
𝑇𝑝𝑎𝑠𝑡
𝑠 𝛽 < 𝑝𝑡ℎ, 𝛽 ∼ U(0, 1)
𝑧𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

Updating Past Student States: After a certain number of itera-
tions, the student can be thought to progressively outgrow the past
knowledge or be much better than the past state (\𝑇𝑝𝑎𝑠𝑡𝑠 ). Hence,
we update the past state to a much recent one to subsequently ad-
vance the relative hardness of training targets. The aforementioned
can also be viewed to follow a curriculum in the training target:
a technique that is widely adopted to enhance network training.
In our case, we follow an update frequency (𝑓𝑢𝑝𝑑𝑎𝑡𝑒 ) to update the
past state. However, intelligent methods to mine for the same can
also be explored.

We provide a visual representation of our approach in Fig 1.
Alongside this, we also present Algorithm 1 as a culmination of all
the above mentioned components.

Algorithm 1 RetroKD Algorithm

Input: Current State Student Parameters \𝑇𝑠 , Teacher Parameters \𝑡 ,
Update frequency 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 , # of warm-up iterations𝑇𝑤𝑎𝑟𝑚𝑢𝑝 , learning
rate [, loss scaling parameter _, # of training iterations N.
\
𝑇𝑝𝑎𝑠𝑡
𝑡 = 𝑁𝑈𝐿𝐿

for step𝑇=1 to N do
Sample (𝑥, 𝑦)𝐵

𝑖=1, from train data
𝑧𝑇
𝑠,𝑖

= 𝑓𝑠 (𝑥𝑖 ;\𝑇𝑠 )
𝑧𝑡,𝑖 = 𝑓𝑡 (𝑥𝑖 ;\𝑡 )
L = L𝐶𝐸 (𝑧𝑇𝑠,𝑖 , 𝑦𝑖 )
𝑎𝑡,𝑖 = 𝑧𝑡,𝑖

if 𝑠𝑡𝑒𝑝 > 𝑇𝑤𝑎𝑟𝑚𝑢𝑝 then

𝑧
𝑇𝑝𝑎𝑠𝑡

𝑠,𝑖
= 𝑓𝑠 (𝑥𝑖 ;\

𝑇𝑝𝑎𝑠𝑡
𝑠 )

Using Eq 7 to get 𝑧𝑡,𝑟𝑒𝑔,𝑖
𝑎𝑡,𝑖 = 𝑧𝑡,𝑟𝑒𝑔,𝑖

end if
L = 𝛼L𝐾𝐷 (𝑧𝑇𝑠,𝑖/𝜏, 𝑎𝑡,𝑖/𝜏 ) + (1 − 𝛼 )L𝐶𝐸 (𝑧𝑇𝑠,𝑖 , �̂�𝑖 )
\𝑇+1𝑠 ← \𝑇𝑠 − [∇L\𝑇𝑠 (𝑥𝑖 , 𝑦𝑖 ;\

𝑇
𝑠 )

if 𝑇 % 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 == 0 then
\
𝑇𝑝𝑎𝑠𝑡
𝑠 ← \𝑇𝑠

end if
end for

4 EXPERIMENTS AND RESULTS
Baselines: We compare against Base KnowledgeDistillation (BKD)

[15] and Distillation with Noisy Teacher (NT) on CIFAR-10, CIFAR-
100 and TinyImageNet datasets. Each of the baseline caters to simi-
lar limitations and setting as ours (described in Table 1) . BKD [15]
is the standard knowledge distillation approach as described in Sec.
2. NT [36] adds random noise to the logits and seeks to produce an
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Dataset Teacher # params BKD NT Ours (interpol) Ours (switch)

CIFAR-10

CNN-4 37k 70.94 71.22 72.08 71.83
CNN-8 328k 72.50 72.46 72.67 72.83
CNN-10 2.48M 72.51 72.62 73.17 72.84
ResNet-20 270k 86.58 86.48 86.70 86.71
ResNet-32 464k 86.53 86.57 86.74 86.71
ResNet-56 853k 86.43 86.49 86.55 86.63

CIFAR-100

CNN-4 476k 51.50 51.60 51.70 51.77
CNN-8 1.24M 51.30 51.56 51.50 51.57
CNN-10 2.93M 51.39 51.70 51.67 51.83
ResNet-20 276k 56.86 56.35 57.37 57.33
ResNet-32 470k 57.05 57.24 56.98 57.22
ResNet-56 859k 56.45 56.67 57.19 57.04

TinyImageNet
ResNet-20 282k 37.44 37.59 37.74 37.94
ResNet-32 477k 37.28 37.49 38.02 37.61
ResNet-56 865k 37.61 37.46 37.60 37.76

Table 2: Accuracy (higher values are better) comparison against the baselines on CIFAR-10/100 and TinyImageNet dataset. Here,
bold font denotes the values for best performing method while underline denotes the second-best.

ensemble effect to regularize the training.
In contrast to adding random noise, our method seeks to compose
the teacher logits with a semantically consistent disturbance taken
from the model’s past steps. For this, we employ two techniques as
described in Sec. 3.2 and in the rest of the paper we refer Interpo-
lation as Ours (Interpol) whereas Random Logit Switch as Ours
(Switch).

Network Architectures: Following [27], we consider similar mod-
els for experimentation, i.e., VGG-like architectures, referred to as
Plain CNNs and the ResNets. Plain CNNs consist of a series of stan-
dard convolutional layers (usually followed by max-pooling and/or
batchnorm) and finally end in a fully connected layer. ResNets, on
the other hand, follow the standard architecture as described in
[14]. In each of the experiments, the choice of the student is always
kept as CNN-2 in the case of Plain CNNs, whereas ResNet-8 in the
case of ResNets. Correspondingly, for teachers one of CNN-{4,8,10}
or ResNet-{20,32,56} is chosen.

Evaluation Metrics: We use Accuracy (Acc) as our evaluation
metric. Table 2 shows a detailed comparison against the baselines.
For a consistent comparison, we report mean over 3 runs for each
method.

Implementation: We used PyTorch [32] for implementing the
models/training routines and use a single single-precision GPU
(NVIDIA GTX 1080Ti) having 12 GB RAM for experimentation. The
input images are pre-processed with normalization and augmented
with a random crop of padding 4 followed by random horizontal
flips. In each of the experiments, parameter update happens with a
standard SGD optimizer having a Nesterov momentum of 0.9. We
now describe the dataset/model specific training settings for each.
For ResNets on CIFAR-10/100, we train for total 100 epochs with
an initial learning rate 1𝑒 − 2 that is divided by factor of 10 at 50𝑡ℎ

and 80𝑡ℎ epochs whereas Plain-CNNs on CIFAR-10/100 are trained
for 80 epochs with an initial learning rate 1𝑒 − 1 being divided by a
factor of 10 at the 40𝑡ℎ epoch. For ResNets on TinyImageNet, we

train for a total of 50 epochs with an initial learning rate 1𝑒 − 2
divided by factor of 10 at 25𝑡ℎ and 40𝑡ℎ epochs respectively. We
set 𝜏 (as described in Eq. 4) for all the experiments as 4 and 𝛼 as
0.9 for CIFAR-10 and 0.2 for CIFAR-100/TinyImageNet ([10, 30]). In
each of the experiments, the hyperparameters 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 ∈ {1, 2, 3, 4},
𝑇𝑤𝑎𝑟𝑚𝑢𝑝 ∈ {25, 30, 40, 50, 60}, _ ∈ {0.3, 0.4, 0.5, 0.6, 0.7} and 𝑝𝑡ℎ ∈
{0.2, 0.45, 0.5, 0.7}. Further, to understand these choices better, we
study the following parameters in Sec. 5.
Result Discussion: Table 2 summarizes the results of our exper-
iments. Firstly, consistent to [27], for all of our datasets (CIFAR-
10/100 and TinyImageNet), we also observe that increasing teacher
size does not necessarily increase the student performance. Now,
following the baselines as mentioned in Table 1 (see lower half) ,
we notice that adding random noise to the logits and producing
an ensemble-like effect [36] does help a lot of times over standard-
BKD, however, cases pertaining to under performance w.r.t BKD
still do exist. This can be accorded to the maligned and uncertain
behaviour of targets obtained as the result of adding noise while
training. Further coming to our method, we can observe that ei-
ther by achieving a higher accuracy, one of the configurations of
RetroKD consistently outperforms the compared baselines.

5 ABLATIONS AND ANALYSIS
5.1 Analysis of the Student Regularized KD
In Sec. 1 we hypothesize that, composing the complex teacher
logits with the ones from the past time steps of student can be
intuitively seen as relaxing the complex training target by making
it relatively similar to the student’s logits while preserving the
semantics from the teacher targets. In this section, we study this
in a more theoretical way. First, we revisit the vanilla knowledge
distillation Eqn. 4.

In NOKD situation where there is no teacher network, i.e. 𝛼 = 1
in Eqn. 4, and the student network 𝑓𝑠 ∈ F𝑠 with capacity |F𝑠 |𝐶 is
learning the real target function 𝑓 ∈ F using cross entropy loss.
We use the VC theory [40] in the NOKD framework [15] and show
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Figure 2: Hyperparameter sensitivity for 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑇𝑤𝑎𝑟𝑚𝑢𝑝 , _ and 𝑝𝑡ℎ . Student=CNN2, Teacher=CNN10 trained on CIFAR-10.

Dataset RKD RKD+RetroKD AT AT+RetroKD NST NST+RetroKD
CIFAR-10 86.42 87.17 86.61 86.80 86.79 87.13
CIFAR-100 56.95 57.01 57.78 58.05 57.05 57.52

TinyImageNet 37.9 38.11 39.05 39.36 37.97 38.10

Table 3: Accuracies before and after applying RetroKD to the feature distillation methods: Relational KD (RKD), Attention
Transfer (AT) and Neuron Selectivity Transfer (NST). Bold font denotes the best accuracy.

the generalization bound of a student network, i.e.;

𝑅(𝑓𝑠 ) − 𝑅(𝑓 ) ≤ 𝑂
( |F𝑠 |𝐶
𝑛Z

𝑠

)
+ 𝜖𝑠 (12)

where, 𝑛 is the number of data point and the 1
2 ≤ Z

𝑠 ≤ 1 is the rate
of learning 1 by which the student 𝑓𝑠 learns the true function 𝑓 . The
𝑂 (·) is the estimation error 2 and the 𝜖𝑠 is the approximation error
3 of the student function class F𝑠 w.r.t real class 𝑓 ∈ F . Similar
to [26, 27, 37] we only discuss estimation error in terms of upper
bound. We shall consider the approximation error to understand
the generalization of any hypothesis function 𝑓 .

The BaselineKD, i.e. BKD, leverages knowledge from both the
teacher network 𝑓𝑡 ∈ F𝑡 and the learning from cross entropy and
it is easy to note that;

𝑅(𝑓𝑠 ) − 𝑅(𝑓 ) = 𝑅(𝑓𝑠 ) − 𝑅(𝑓𝑡 )︸          ︷︷          ︸
Distillation from Teacher

+𝑅(𝑓𝑡 ) − 𝑅(𝑓 )︸          ︷︷          ︸
Teacher Error

≤
[
𝑂

( |F𝑡 |𝐶
𝑛Z

𝑡
+ |F𝑠 |𝐶

𝑛Z
𝑙

)
+ 𝜖𝑡 + 𝜖𝑙

]
] ≤

[
𝑂

( |F𝑠 |𝐶√
𝑛

)
+ 𝜖𝑠

] (13)

As the student that has a low capacity, i.e. |F𝑠 |𝐶«|F𝑡 |𝐶 , that learns
the real target function 𝑓 ∈ F at a slow rate of learning (i.e. 12 ≤ Z

𝑠 ).
Similar to the argument in [26], the teacher is a high capacity
network with a near 1 rate of learning, i.e. Z𝑡 = 1, and the Z𝑠 is in
between 1

2 and the 1, i.e. 12 ≤ Z𝑠 ≤ 1, as it is easy to approximate
the teacher 𝑓𝑡 with a student 𝑓𝑠 than the real function 𝑓 . However,
the Z𝑠 = 1

2 if the student is to approximate the real function 𝑓

and hence we see the 𝑛Z𝑠 =
√
𝑛 in the R.H.S of the inequality. To

1Rate of Learning: The rate at which the function 𝑓 learns the true function 𝑓 , where
𝑓 can be a teacher network or a student network. For non-separable problems (a.k.a
difficult problems) the exponent Z = 1

2 , meaning that, we need more data points to
approximate true function 𝑓 with some accuracy. On the other hand, for separable
problems (a.k.a easy problems) the Z = 1 and we may require few data points to
approximate true function.
2Estimation Error: Given F the estimation error is the minimum generalization
error by 𝑓
3Approximation Error: Typically, the difference between the approximation error
and the error achieved by the predictor in the hypothesis class minimizing the training
error.

conclude, the inequality highlights the benefits of learning a low
capacity student network with a teacher, that is, it helps to generalize
a student network better than learning the student network alone,
i.e. (𝜖𝑡 + 𝜖𝑙 )«𝜖𝑠 from Eqn. 13.

In RetroKD, without the loss of generality, we leverage the stu-
dent regularization (temporal regularization) and show how it im-
proves the generalization bound. Assuming the past student is
𝑓𝑠 ∈ F𝑠 , we can write the following inequality;

𝑅(𝑓𝑠 ) − 𝑅(𝑓𝑠 ) ≤ 𝑂
( |F𝑠 |𝐶
𝑛Z

𝑠

)
+ 𝜖𝑠 (14)

One may ask, how 𝜖𝑠 is helping to minimize approximation error?
To answer this, we refer to the theoretical result of Bartlett et al.
[28] that assumes to learn;

𝑓 ∗𝑠 ≡ arg min
𝑓 ∈F

𝑅(𝑓 ) s.t.
1
𝐾

∑︁
𝑘

(𝑓 (𝑥𝑘 ) − 𝑦𝑘 )2 ≤ 𝜖 (15)

where, F : X → Y is the space of all admissible functions from
where we learn 𝑓 ∗𝑠 . The finite dataset D ≡ {𝑥𝑘 , 𝑦𝑘 } has 𝐾 number
of training points 𝑘 = {1, 2, · · · , 𝐾} and 𝜖 > 0 is a desired loss
tolerance. Without the loss of generality the Eqn. 15 can be written
as;

𝑓 ∗𝑠 = arg min
𝑓 ∈F

1
𝐾

∑︁
𝑘

(𝑓 (𝑥𝑘 ) − 𝑦𝑘 )2

+ 𝑐
∫
X

∫
X
𝑢 (𝑥, 𝑥†) 𝑓 (𝑥) 𝑓 (𝑥†)𝑑𝑥𝑑𝑥†

(16)

with 𝑢 (·) implying that ∀𝑓𝑠 ∈ F the 𝑅(𝑓 ) > 0 with equality when
𝑓𝑠 (𝑥) = 0 and the the 𝑐 > 0 [28, 44]. Further, the Eqn. 16 can be
written as a closed form;

𝑓 ∗𝑠 (𝑥) = g𝑇𝑥 (𝑐𝐼 +𝐺)−1𝑦 (17)

where, g𝑥 [𝑘] ≡ 1
𝐾
𝑔(𝑥, 𝑥𝑘 ), 𝐺 [ 𝑗, 𝑘] ≡ 1

𝐾
𝑔(𝑥 𝑗 , 𝑥𝑘 ), and 𝑔(·) is called

Green’s function [7]. The matrix 𝐺 is positive definite and can be
represented as 𝐺 = 𝑉𝑇𝐷𝑉 , the diagonal matrix 𝐷 contains the
eigenvalues and 𝑉 comprised of eigenvectores. From the proof of
[28] we can show that at time 𝑡 of the student network 𝑓𝑠 , i.e.;
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𝑓𝑠,𝑡 = g𝑇𝑥 (𝑐𝐼 + 𝐺)−1𝑦𝑡 = g𝑇𝑥𝑉
𝑇𝐷 (𝑐𝑡 𝐼 + 𝐷)−1𝑉𝑦𝑡−1 can benefit

from the previous round’s 𝑡 − 1 knowledge distillation. Such self
distillation sparsifies (𝑐𝐼 +𝐺)−1 at a given rate, thus ensuring the
progressively limiting the number of basis function that acts as a
good regularizer [28].

As a consequence, we can write similar to Eqn. 13;
𝑅(𝑓𝑠 ) − 𝑅(𝑓 )

= 𝑅(𝑓𝑠 ) − 𝑅(𝑓𝑠 )︸          ︷︷          ︸
Distillation from Past State

+ 𝑅(𝑓𝑠 ) − 𝑅(𝑓𝑡 )︸          ︷︷          ︸
Distill from Teacher

+𝑅(𝑓𝑡 ) − 𝑅(𝑓 )︸          ︷︷          ︸
Teacher Error

≤ 𝑂
( |F𝑠 |𝐶
𝑛Z

𝑠
+ |F𝑡 |𝐶

𝑛Z
𝑡
+ |F𝑠 |𝐶

𝑛Z
𝑙

)
+ 𝜖𝑡 + 𝜖𝑙 + 𝜖𝑠

(18)

Please note that, in Eqn. 18, the risk associated with past state
𝑅(𝑓𝑠 ) is asymptotically equivalent to the present state student 𝑅(𝑓𝑠 ).
Therefore, we note that;

𝑂

( |F𝑠 |𝐶
𝑛Z

𝑠
+ |F𝑡 |𝐶

𝑛Z
𝑡
+ |F𝑠 |𝐶

𝑛Z
𝑙

)
+ 𝜖𝑡 + 𝜖𝑙 + 𝜖𝑠

≤ 𝑂
( |F𝑡 |𝐶
𝑛Z

𝑡
+ |F𝑠 |𝐶

𝑛Z
𝑙

)
+ 𝜖𝑡 + 𝜖𝑙 ≤ 𝑂

( |F𝑠 |𝐶√
𝑛

)
+ 𝜖𝑠

(19)

According to Bartlett et al. [28], the approximation error 𝜖𝑠 helps
to reduce the training error in conjunction with the 𝜖𝑡 + 𝜖𝑙 , and
hence we can say, 𝜖𝑡 + 𝜖𝑙 + 𝜖𝑠 ≤ 𝜖𝑡 + 𝜖𝑙«𝜖𝑠 , which means that the
upper bound of error in RetroKD is smaller than its upper bound
in BKD and NOKD, when 𝑛 →∞. Even in the finite range, when
the capacity of |F𝑡 |𝑐 is larger than |F𝑠 |𝑐 and the student network is
distilling from its past state the RetroKD still works, pls. see Table
4 similarity column.

5.2 Hyperparameter Sensitivity
Here, we explore the hyperparameter sensitivity for RetroKD , when
CNN-2 is distilled from CNN-10, on CIFAR-10. Figure 2 displays
variations with respect to different hyperparameters choices. For
𝑇𝑤𝑎𝑟𝑚𝑢𝑝 , it can be seen that introducing RetroKD too early or too
late can hurt the performance. For too early, we believe it may be
due to lesser semantic information in the labels. Whereas for the
too late, we believe it may be due to lesser training time available
for RetroKD to regularize. For _ and 𝑝𝑡ℎ , we can observe that the
best performance is achieved somewhere in the middle rather than
any of the extremes, which can be intuitively explained as logits
exhibiting either behaviour of past state or teacher on the extremes.
For 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 , the performance consistently decreases on increasing
its value, thereby suggesting that updating the past state too late
affects the performance in our case.

5.3 Similarity with Teacher Features
RetroKD explicitly modifies the logits, and its improvement is ev-
ident from Table 2. However, how RetroKD affects the internal
representations is not trivial to guess. Since every KD method aims
at obtaining knowledge from the teacher, we can expect a better
student to be more similar to the teacher because it was able to
acquire better knowledge from the same. Looking at the superior-
ity of RetroKD from Table 2, one can expect that teacher features
should be more similar to RetroKD features, rather than BKD fea-
tures. There have been recent works like [22] and [29] that aim at

providing metrics to evaluate feature similarity of neural network
representations. Such metrics can be used in computing feature
similarity between teacher and student networks. Intuitively, we
expect that a better distillation method should yield more feature
similarity between teacher and student. For our analysis, we use the
Linear-CKA metric proposed by [22] for comparing the similarity
of representations and compute Linear-CKA similarity between
student models trained using BKD and RetroKD for the convolu-
tional features. We compute CKA on 20K samples (40% of total)
from the train set of CIFAR-10. The results are shown in Table 4
(see left half).

Student Teacher Similarity (↑) Sharpness (↓)
BKD RetroKD BKD RetroKD

CNN-2
CNN-4 0.1656 0.1728 338.82 380.36
CNN-8 0.2469 0.2658 733.68 681.33
CNN-10 0.2228 0.2217 763.38 722.82

ResNet-8
ResNet-20 0.7334 0.7355 611.73 551.83
ResNet-32 0.6771 0.6823 620.69 696.60
ResNet-56 0.6461 0.6615 751.54 613.12

Table 4: Similarity and Sharpness computed for CNN-2 stu-
dent trained with CNN-4/8/10 teacher and ResNet-8 student
trained with ResNet-20/32/56 teacher, on CIFAR-10 dataset.
Similarity is higher for RetroKD , indicating better knowl-
edge transfer from teacher. Sharpness is smaller for RetroKD
, justifying the better generalization with RetroKD . Bold
font indicates better values.

Almost all students trained using RetroKD , were found to have
features more similar to teacher, as compared to student trained
with BKD. This clearly indicates that RetroKD helps in learning
better representations.

5.4 Flatness of Solution
In several recent works [3, 12, 16, 21, 24], it has been empirically
observed that Neural Networks with better generalization have flat-
ter converged solutions. However, this concept was heavily verified
on a wide range of deep networks, with the help of visualization
proposed by [24]. Interestingly in [45], the authors reason the suc-
cess of their method can be related to entropy-regularization based
approaches, where the goal is to reach a flatter minima. The visu-
alization provided by [24] plots the loss along with two random
orthogonal directions in the parameter space, given a point in pa-
rameter space, e.g., the converged weights. Considering the better
generalizing solution of RetroKD , the landscape of RetroKD should
be flatter. We plot the landscape when ResNet is trained with KD
[15] (BKD) and RetroKD . The plots in Fig 3 clearly indicate that
RetroKD solutions posses flatter minima.

Contrastive to the plot based visualization, a point estimate
to the flatness was provided by [33]. The measure was termed as
sharpness and can be considered as opposite to flatness. We compute
sharpness over 2000 random train samples (4% of the total dataset)
from the CIFAR-10 dataset for the students CNN-2 and ResNet-8
and report the numbers in Table 4 (see right half). In most of the
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Figure 3: Loss landscape for a) student=ResNet-8, teacher= ResNet-20 (BKD), b) student=ResNet-8, teacher=ResNet-20 (RetroKD)
c) student=ResNet-8, teacher=ResNet-32 (BKD), d) student=ResNet-8, teacher=ResNet-32 (RetroKD)

Figure 4: Performance vs. number of past models used

cases, RetroKD was found to be more flatter than BKD, justifying
the flatter convergence.

5.5 Adding RetroKD to Other Feature-KD
As described in Sec. 2, the KD framework has evolved over time and
one peculiar set of these methods is feature distillation. Broadly, fea-
ture distillation differs from the standard KD framework in using ex-
tra knowledge from teacher features of the teacher. In most of these
methods, distillation happens using features alongside teacher logits
rather than logits alone. Thus, it is possible to question if RetroKD
can be used to improve the logit-distillation component in feature
distillation. By virtue of its simplicity, we believe RetroKD can be
easily applied to any such feature distillation method. Therefore, as
an exploratory analysis, here, we consider 3 popular feature distil-
lation methods i.e., RKD[31], NST[17], AT[43] and apply RetroKD
to the logit component of the same. To describe the above methods
briefly: RKD[31] maintains the angle and distance-based similar-
ity relations between the convolutional features across examples.
NST[17] poses knowledge transfer as a distribution matching prob-
lem and match the neuron selectivity pattern via Maximum Mean
Discrepancy loss, AT[43] on the other hand shows that activation
based attention transfer is better than full-activation transfer. For
the aforementioned experiments, we use ResNet-20 as the teacher
and ResNet-8 as the student, each of which follows the same num-
ber of epochs, learning rate schedule as described in Sec. 4. We
report the maximum accuracy obtained from both kinds of OCFs.
The results reported in Table 3 show encouraging improvements,
thereby motivating further study of RetroKD with such approaches.

6 CONCLUSIONS AND FUTUREWORK
In this work, we specifically focus on regularizing student learn-
ing from complex teacher targets. We discussed several recent
approaches and pointed out the limitations constraining each of
them, mentioned in Table 1. Alleviating the above limitations, we
then focus on the methods that help regularize the student training
in the presence of teacher logits only. Motivated by the same, we
then proposed RetroKD, a novel technique that utilizes the past
student for relatively relaxing the hardness of complex teacher tar-
gets while training the student in KD. Our extensive experiments
demonstrate the effectiveness of RetroKD. With the objective of
understanding deeper into our method, we conduct ablation studies
on several hyperparameter choices and diverse analysis focusing
on different aspects of the performance.
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