3 research outputs found

    Simulation of variations in the composition of samples in the evaluation of neutral detergent fiber contents by using cellulose standard in filter bags made from different textiles

    Get PDF
    The objective of this study was to evaluate the efficiency of using nylon textiles (50 μm), F57 (Ankom®) and non-woven textile (NWT - 100 g/m2) on laboratory evaluation of neutral detergent fiber (NDF) by using quantitative filter paper as purified cellulose standard and by simulating different composition of samples with additions of corn starch, pectin, casein and soybean oil. The quantitative filter paper was processed in a knife mill with a 1-mm screen sieve and the procedures for analyses of NDF contents were performed in a fiber analyzer (Ankom220®). Four experiments were carried out with additions of different ingredients into the filter paper: corn starch added at the levels of 15 or 50%; pectin, 15 or 50%; casein, 10 or 30%; and soybean oil at 0, 5, 10, 15, 25 or 50% of dry matter, respectively. The ratio 20 mg of dry matter/cm2 of surface was followed. When it was relevant, in function of the evaluated treatments, heat-stable α-amylase was used. The use of F57 and NWT resulted in accurate estimates of NDF contents whereas nylon textile caused loss of insoluble fibrous particles, compromising accuracy of the results. For samples containing starch, use of heat-stable α-amylase is recommended in the evaluation of NDF contents. Pectin and casein are completely solubilized by neutral detergent solution. Levels of oil higher than 10% cause overestimation of NDF contents

    Simulation of variations in the composition of samples in the evaluation of neutral detergent fiber contents by using cellulose standard in filter bags made from different textiles

    Get PDF
    The objective of this study was to evaluate the efficiency of using nylon textiles (50 μm), F57 (Ankom®) and non-woven textile (NWT - 100 g/m2) on laboratory evaluation of neutral detergent fiber (NDF) by using quantitative filter paper as purified cellulose standard and by simulating different composition of samples with additions of corn starch, pectin, casein and soybean oil. The quantitative filter paper was processed in a knife mill with a 1-mm screen sieve and the procedures for analyses of NDF contents were performed in a fiber analyzer (Ankom220®). Four experiments were carried out with additions of different ingredients into the filter paper: corn starch added at the levels of 15 or 50%; pectin, 15 or 50%; casein, 10 or 30%; and soybean oil at 0, 5, 10, 15, 25 or 50% of dry matter, respectively. The ratio 20 mg of dry matter/cm2 of surface was followed. When it was relevant, in function of the evaluated treatments, heat-stable α-amylase was used. The use of F57 and NWT resulted in accurate estimates of NDF contents whereas nylon textile caused loss of insoluble fibrous particles, compromising accuracy of the results. For samples containing starch, use of heat-stable α-amylase is recommended in the evaluation of NDF contents. Pectin and casein are completely solubilized by neutral detergent solution. Levels of oil higher than 10% cause overestimation of NDF contents

    Evaluation of ruminal degradation profiles of forages using bags made from different textiles

    Get PDF
    The objective of this study was to evaluate the in situ degradation profiles of dry matter (DM) and neutral detergent fiber (NDF) of different forages using nylon (50 µm), F57 (Ankom®) and non-woven textile (NWT - 100 g/m²) bags. Eight forage samples were used: sugarcane, corn silage, elephant grass cut at 50 and 250 days of regrowth, corn straw, signal grass hay, coast cross hay, and fresh alfalfa. Samples were incubated for 0, 3, 6, 12, 18, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, and 312 hours. Two bags of each textile were used at each incubation time, totaling 768 bags, using two crossbred Holstein × Zebu steers fitted with ruminal canullae. There was difference in the common rate of lag and degradation (λ) of DM for all forages, except for sugarcane. In general, higher λ estimates were obtained using nylon, followed by NWT and F57. Concerning NDF degradation profiles, differences in λ were observed for all forages. Greater estimates were obtained using nylon. Degradation profiles of DM and NDF must not be evaluated using F57 and NWT. These textiles underestimate the degradation rate due to constraints regarding exchange between bags' content and rumen environment
    corecore