50 research outputs found

    Power-law tail distributions and nonergodicity

    Full text link
    We establish an explicit correspondence between ergodicity breaking in a system described by power-law tail distributions and the divergence of the moments of these distributions.Comment: 4 pages, 1 figure, corrected typo

    Gas-plasma compressional wave coupling by momentum transfer

    Get PDF
    Pressure disturbances in a gas-plasma mixed fluid will result in a hybrid response, with magnetosonic plasma waves coupled to acoustic waves in the neutral gas. In the analytical and numerical treatment presented here, we demonstrate the evolution of the total fluid medium response under a variety of conditions, with the gas-plasma linkage achieved by additional coupling terms in the momentum equations of each species. The significance of this treatment lies in the consideration of density perturbations in such fluids: there is no 'pure' mode response, only a collective one in which elements of the characteristics of each component are present. For example, an initially isotropic gas sound wave can trigger an anisotropic magnetic response in the plasma, with the character of each being blended in the global evolution. Hence sound waves do not remain wholly isotropic, and magnetic responses are less constrained by pure magnetoplasma dynamics

    Statistical Properties of Many Particle Eigenfunctions

    Full text link
    Wavefunction correlations and density matrices for few or many particles are derived from the properties of semiclassical energy Green functions. Universal features of fixed energy (microcanonical) random wavefunction correlation functions appear which reflect the emergence of the canonical ensemble as the number of particles approaches infinity. This arises through a little known asymptotic limit of Bessel functions. Constraints due to symmetries, boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure

    Foundation of Statistical Mechanics under experimentally realistic conditions

    Full text link
    We demonstrate the equilibration of isolated macroscopic quantum systems, prepared in non-equilibrium mixed states with significant population of many energy levels, and observed by instruments with a reasonably bound working range compared to the resolution limit. Both properties are fulfilled under many, if not all, experimentally realistic conditions. At equilibrium, the predictions and limitations of Statistical Mechanics are recovered.Comment: Accepted in Phys. Rev. Let

    Entropy production and equilibration in Yang-Mills quantum mechanics

    Get PDF
    The Husimi distribution provides for a coarse grained representation of the phase space distribution of a quantum system, which may be used to track the growth of entropy of the system. We present a general and systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct a coarse grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and calculate the time evolution of the coarse grained entropy of a highly excited state. We show that the coarse grained entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system.Comment: 23 pages, 23 figure

    Canonical thermalization

    Full text link
    For quantum systems that are weakly coupled to a much 'bigger' environment, thermalization of possibly far from equilibrium initial ensembles is demonstrated: for sufficiently large times, the ensemble is for all practical purposes indistinguishable from a canonical density operator under conditions that are satisfied under many, if not all, experimentally realistic conditions

    Chaos and Quantum Thermalization

    Full text link
    We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey {\it Berry's conjecture}. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon {\it eigenstate thermalization}. We show that a generic initial state will approach thermal equilibrium at least as fast as O(/Δ)t1O(\hbar/\Delta)t^{-1}, where Δ\Delta is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a new foundation for quantum statistical mechanics.Comment: 28 pages in Plain TeX plus 2 uuencoded PS figures (included); minor corrections only, this version will be published in Phys. Rev. E; UCSB-TH-94-1

    Examen critique de la théorie des plasmas basée sur le libre parcours moyen, à la lumière de la méthode fondée sur la fonction de distribution solution de l'équation de Boltzmann

    No full text
    On montre la supériorité incontestable de la méthode des fonctions de distribution sur celle du libre parcours moyen en examinant divers exemples caractéristiques choisis dans la théorie des plasmas et en mettant en relief les déficiences manifestes de la méthode du libre parcours moyen. Au cours de cette étude on reprend, en outre, diverses objections soulevées à propos de résultats antérieurs obtenus par les auteurs
    corecore