158 research outputs found
Novel Norovirus in Dogs with Diarrhea
To identify the prevalence and genetic variability of noroviruses in dogs, we tested fecal samples by using reverse transcription–PCR. We found canine norovirus in 40% and 9% of dogs with and without diarrhea, respectively. The virus was genetically unrelated to other noroviruses and constitutes a tentative new genogroup
Assessment of areas at increased risk for poliovirus circulation in Ecuador
To assess areas at risk for poliovirus circulation in Ecuador, we first selected provinces at highest risk based on low immunization coverage with three doses of oral poliovirus vaccine, and a low number of reported cases of acute flaccid paralysis (AFP). Subsequently, we reviewed discharge data for the period 1996--2000 for diagnoses compatible with AFP in the only two national referral hospitals in Quito, and at least two main hospitals in each of the six selected provinces. Environmental samples from one or two cities/towns in each selected province were tested for poliovirus. Of the 14 identified AFP-compatible cases, 8 (57%) had been previously reported and investigated. We visited four out of the six unreported cases; none of those four had sequelae compatible with poliomyelitis. From the 14 environmental samples taken, we identified Sabin viruses in six of the samples; no vaccine-derived polioviruses were isolated. Using this methodology, we found no evidence of undetected poliovirus circulation in Ecuador
Recommended from our members
Enteropathogen antibody dynamics and force of infection among children in low-resource settings.
Little is known about enteropathogen seroepidemiology among children in low-resource settings. We measured serological IgG responses to eight enteropathogens (Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, enterotoxigenic Escherichia coli, Vibrio cholerae, Campylobacter jejuni, norovirus) in cohorts from Haiti, Kenya, and Tanzania. We studied antibody dynamics and force of infection across pathogens and cohorts. Enteropathogens shared common seroepidemiologic features that enabled between-pathogen comparisons of transmission. Overall, exposure was intense: for most pathogens the window of primary infection was <3 years old; for highest transmission pathogens primary infection occurred within the first year. Longitudinal profiles demonstrated significant IgG boosting and waning above seropositivity cutoffs, underscoring the value of longitudinal designs to estimate force of infection. Seroprevalence and force of infection were rank-preserving across pathogens, illustrating the measures provide similar information about transmission heterogeneity. Our findings suggest antibody response can be used to measure population-level transmission of diverse enteropathogens in serologic surveillance
Emergence of New Pandemic GII.4 Sydney Norovirus Strain Correlates With Escape From Herd Immunity
Background. GII.4 noroviruses are a significant source of acute gastroenteritis worldwide, causing the majority of human norovirus outbreaks. Evolution of the GII.4 major capsid protein occurs rapidly, resulting in the emergence of new strains that produce successive waves of pandemic disease. A new pandemic isolate, GII.4 2012 Sydney, largely replaced previously circulating strains in late 2012. We compare the antigenic properties of GII.4 2012 Sydney with previously circulating strains. Methods. To determine whether GII.4-2012 Sydney is antigenically different from recently circulating strains GII.4-2006 Minerva and GII.4-2009 New Orleans in previously identified blockade epitopes, we compared reactivity and blockade profiles of GII.4-2006, GII.4-2009, and GII.4-2012 virus-like particles in surrogate neutralization/blockade assays using monoclonal antibodies and human polyclonal sera. Results. Using monoclonal antibodies that map to known blockade epitopes in GII.4-2006 and GII.4-2009 and human outbreak polyclonal sera, we demonstrate either complete loss or significantly reduced reactivity and blockade of GII.4.2012 compared to GII.4-2006 and GII.4-2009. Conclusions. GII.4-2012 Sydney is antigenically different from GII.4-2006 Minerva and GII.4-2009 New Orleans in at least 2 key blockade epitopes. Viral evolution in key potential neutralization epitopes likely allowed GII.4-2012 to escape from human herd immunity and emerge as the new predominant strai
Mucosal and systemic neutralizing antibodies to norovirus induced in infant mice orally inoculated with recombinant rotaviruses
Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in viv
Household Surveillance for Norovirus Gastroenteritis in a Nicaraguan Birth Cohort: A Nested Case—Control Analysis of Norovirus Risk Factors
Norovirus causes a large proportion of pediatric acute gastroenteritis (AGE) worldwide, and no vaccines are currently available. To inform public health measures against norovirus gastroenteritis, we assessed risk factors in a case–control study nested in a birth cohort study in Nicaragua. Between June 2017 and January 2022, we followed children weekly for AGE episodes, and collected stool specimens from symptomatic children. Risk factors for AGE were collected during routine weekly visits. Norovirus was detected in stools using real-time reverse transcriptase polymerase chain reaction and positive specimens were genotyped using Sanger sequencing. We included 40 norovirus-positive AGE children matched 1:2 to controls and conducted bivariate and multivariable analyses of norovirus AGE risk factors. Among typeable norovirus infections, GII.4 were more severe than non-GII.4 (four/twenty-one vs. one/nine) and accounted for all emergency visits and hospitalizations. Adjusted conditional logistic regression found that female sex and higher length-for-age Z score were protective against norovirus AGE; a dirt floor in the home, sharing cups or bottles, and recent contact with someone with AGE symptoms were associated with norovirus AGE, though estimates were highly imprecise. Reducing contact with symptomatic persons and with saliva or other bodily fluids on cups or floors could reduce infant norovirus incidence
Evaluation of crAssphages as a potential marker of human viral contamination in environmental water and fresh leafy greens
CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2–3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain
Emergence of New Pandemic GII.4 Sydney Norovirus Strain Correlates With Escape From Herd Immunity
Background. GII.4 noroviruses are a significant source of acute gastroenteritis worldwide, causing the majority of human norovirus outbreaks. Evolution of the GII.4 major capsid protein occurs rapidly, resulting in the emergence of new strains that produce successive waves of pandemic disease. A new pandemic isolate, GII.4 2012 Sydney, largely replaced previously circulating strains in late 2012. We compare the antigenic properties of GII.4 2012 Sydney with previously circulating strains
Increased circulation of GII.17 noroviruses, six European countries and the United States, 2023 to 2024
We report an increase in GII.17 norovirus outbreaks and sporadic infections of acute gastroenteritis in Austria, Germany, France, Ireland, the Netherlands, England and the United States during the 2023/24 season. A decrease in GII.4 coincided with GII.17 prevalence increasing to between 17% and 64% of all GII detections. Overall, 84% of the GII.17 strains clustered closely with strains first reported in Romania in 2021 and two new sub-lineages were identified. Norovirus surveillance and molecular characterisation should be prioritised this winter.</p
Emergence of a novel GII.17 norovirus – end of the GII.4 era?
In the winter of 2014/15 a novel GII.P17-GII.17 norovirus strain (GII.17 Kawasaki 2014) emerged, as a major cause of gastroenteritis outbreaks in China and Japan. Since their emergence these novel GII.P17-GII.17 viruses have replaced the previously dominant GII.4 genotype Sydney 2012 variant in some areas in Asia but were only detected in a limited number of cases on other continents. This perspective provides an overview of the available information on GII.17 viruses in order to gain insight in the viral and host characteristics of this norovirus genotype. We further discuss the emergence of this novel GII.P17-GII.17 norovirus in context of current knowledge on the epidemiology of noroviruses. It remains to be seen if the currently dominant norovirus strain GII.4 Sydney 2012 will be replaced in other parts of the world. Nevertheless, the public health community and surveillance systems need to be prepared in case of a potential increase of norovirus activity in the next seasons caused by this novel GII.P17-GII.17 norovirus
- …