11 research outputs found

    The role of economic evaluation in the decision-making process of family physicians: design and methods of a qualitative embedded multiple-case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A considerable amount of resource allocation decisions take place daily at the point of the clinical encounter; especially in primary care, where 80 percent of health problems are managed. Ignoring economic evaluation evidence in individual clinical decision-making may have a broad impact on the efficiency of health services. To date, almost all studies on the use of economic evaluation in decision-making used a quantitative approach, and few investigated decision-making at the clinical level. An important question is whether economic evaluations affect clinical practice. The project is an intervention research study designed to understand the role of economic evaluation in the decision-making process of family physicians (FPs). The contributions of the project will be from the perspective of Pierre Bourdieu's sociological theory.</p> <p>Methods/design</p> <p>A qualitative research strategy is proposed. We will conduct an embedded multiple-case study design. Ten case studies will be performed. The FPs will be the unit of analysis. The sampling strategies will be directed towards theoretical generalization. The 10 selected cases will be intended to reflect a diversity of FPs. There will be two embedded units of analysis: FPs (micro-level of analysis) and field of family medicine (macro-level of analysis). The division of the determinants of practice/behaviour into two groups, corresponding to the macro-structural level and the micro-individual level, is the basis for Bourdieu's mode of analysis. The sources of data collection for the micro-level analysis will be 10 life history interviews with FPs, documents and observational evidence. The sources of data collection for the macro-level analysis will be documents and 9 open-ended, focused interviews with key informants from medical associations and academic institutions. The analytic induction approach to data analysis will be used. A list of codes will be generated based on both the original framework and new themes introduced by the participants. We will conduct within-case and cross-case analyses of the data.</p> <p>Discussion</p> <p>The question of the role of economic evaluation in FPs' decision-making is of great interest to scientists, health care practitioners, managers and policy-makers, as well as to consultants, industry, and society. It is believed that the proposed research approach will make an original contribution to the development of knowledge, both empirical and theoretical.</p

    Immobilized rGO/TiO2 Photocatalyst for Decontamination of Water

    No full text
    The preparation of immobilized graphene-based photocatalyst layers is highly desired for environmental applications. In this study, the preparation of an immobilized reduced graphene oxide (rGO)/TiO2 composite by electrophoretic deposition (EPD) was optimized. It enabled quantitative deposition without sintering and without the use of any dispersive additive. The presence of rGO had beneficial effects on the photocatalytic degradation of 4-chlorophenol in an aqueous solution. A marked increase in the photocatalytic degradation rate was observed, even at very low concentrations of rGO. Compared with the TiO2 and GO/TiO2 reference layers, use of the rGO/TiO2 composite (0.5 wt% of rGO) increased the first-order reaction rate constant by about 70%. This enhanced performance was due to the increased formation of hydroxyl radicals that attacked the 4-chlorophenol molecules. The direct charge transfer mechanism had only limited effect on the degradation. Thus, EPD-prepared rGO/TiO2 layers appear to be suitable for environmental application

    CDx: a family of real-time Java benchmarks

    Get PDF
    Java is becoming a viable platform for hard real-time computing. There are production and research real-time Java VMs, as well as applications in both military and civil sector. Technological advances and increased adoption of Real-time Java contrast significantly with the lack of real-time benchmarks. The few benchmarks that exist are either low-level synthetic micro-benchmarks, or benchmarks used internally by companies, making it difficult to independently verify and repeat reported results. This paper presents the CDx (Collision Detector) benchmark suite, an open source application benchmark suite that targets different hard and soft real-time virtual machines. CDx is, at its core, a real-time benchmark with a single periodic task, which implements aircraft collision detection based on simulated radar frames. The benchmark can be configured to use different sets of real-time features and comes with a number of workloads. We describe the architecture of the benchmark and characterize the workload based on input parameters

    Developing safety critical Java applications with oSCJ/L0

    No full text
    We present oSCJ, an implementation of the draft of Safety Critical Java (SCJ) specification. SCJ is designed to make Java amenable to writing mission- and safety-critical software. It does this by defining a subset of the Real-time Specification for Java that trades expressiveness for verifiability. This paper gives a high-level description of our implementation of the first compliance level of the SCJ specification, a library called oSCJ, and reports on performance evaluation on the Ovm real-time Java virtual machine. We compare SCJ to C on both a real-time operating system on the LEON3 platform and Linux on a x86. Our results suggest that a high-degree of predictability and competitive performance can indeed be achieved

    Use of Liquid Chromatography with Electrochemical Detection for the Determination of Antioxidants in Less Common Fruits

    No full text
    Neurodegenerative disorders (NDD) have become the common global health burden over the last several decades. According to World Health Organization (WHO), a staggering 30 million people will be affected by Alzheimer’s disease in Europe and the USA by 2050. Effective therapies in this complex field considering the multitude of symptoms associated with NDD indications, have not been found yet. Based on the results of NDD related studies, prevention appears to be the promise alternative. Antioxidative and anti-inflammatory properties are hypothesized for natural phenolics, a group of plant secondary products that may positively impact neurodegenerative diseases. In these studies, phenolic-rich extracts from less common fruit species: Blue honeysuckle (Lonicera edulis, Turcz. ex. Freyn), Saskatoon berry (Amelanchier alnifolia Nutt.), and Chinese hawthorn (Crateagus pinnatifida Bunge) were obtained and analyzed to detect neuroprotective substances content and establish a potential therapeutic value. High performance liquid chromatography with electrochemical detection was optimized and further applied on analysis of the extracts of less common fruit species. It was observed that Chinese hawthorn and Blue honeysuckle extracts are potent source of neuroprotective phenolic antioxidants. In accordance the results, it appears that the fruit or formulated products may have the potential for the prevention of neurodegenerative diseases

    Chiral Light Emission from a Hybrid Magnetic Molecule–Monolayer Transition Metal Dichalcogenide Heterostructure

    No full text
    Hybrid layered materials assembled from atomically thin crystals and small molecules bring great promises in pushing the current information and quantum technologies beyond the frontiers. We demonstrate here a class of layered valley–spin hybrid (VSH) materials composed of a monolayer two-dimensional (2D) semiconductor and double-decker single molecule magnets (SMMs). We have materialized a VSH prototype by thermal evaporation of terbium bis-phthalocyanine onto a MoS2 monolayer and revealed its composition and stability by both microscopic and spectroscopic probes. The interaction of the VSH components gives rise to the intersystem crossing of the photogenerated carriers and moderate p-doping of the MoS2 monolayer, as corroborated by the density functional theory calculations. We further explored the valley contrast by helicity-resolved photoluminescence (PL) microspectroscopy carried out down to liquid helium temperatures and in the presence of the external magnetic field. The most striking feature of the VSH is the enhanced A exciton-related valley emission observed at the out-of-resonance condition at room temperature, which we elucidated by the proposed nonradiative energy drain transfer mechanism. Our study thus demonstrates the experimental feasibility and great promises of the ultrathin VSH materials with chiral light emission, operable by physical fields for emerging opto-spintronic, valleytronic, and quantum information concepts
    corecore