7 research outputs found

    Phase Separation of Crystal Surfaces: A Lattice Gas Approach

    Full text link
    We consider both equilibrium and kinetic aspects of the phase separation (``thermal faceting") of thermodynamically unstable crystal surfaces into a hill--valley structure. The model we study is an Ising lattice gas for a simple cubic crystal with nearest--neighbor attractive interactions and weak next--nearest--neighbor repulsive interactions. It is likely applicable to alkali halides with the sodium chloride structure. Emphasis is placed on the fact that the equilibrium crystal shape can be interpreted as a phase diagram and that the details of its structure tell us into which surface orientations an unstable surface will decompose. We find that, depending on the temperature and growth conditions, a number of interesting behaviors are expected. For a crystal in equilibrium with its vapor, these include a low temperature regime with logarithmically--slow separation into three symmetrically--equivalent facets, and a higher temperature regime where separation proceeds as a power law in time into an entire one--parameter family of surface orientations. For a crystal slightly out of equilibrium with its vapor (slow crystal growth or etching), power--law growth should be the rule at late enough times. However, in the low temperature regime, the rate of separation rapidly decreases as the chemical potential difference between crystal and vapor phases goes to zero.Comment: 16 pages (RevTex 3.0); 12 postscript figures available on request ([email protected]). Submitted to Physical Review E. SFU-JDSDJB-94-0

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    A Virtual Necropsy: Applications of 3D Scanning for Marine Mammal Pathology and Education

    No full text
    Stranded large whales represent an opportunity to learn about the anatomy and health of these cryptic free-ranging animals. However, where time and access is frequently limited, law enforcement and management priorities often take precedence over research, outreach, and educational uses. On 14 March 2021, a dead female adult humpback whale was reported stranded on an uninhabited island 15 miles west of Sitka, Alaska. The whale was three-dimensionally scanned using light detection and ranging (LiDAR) and photogrammetry before, during, and at multiple time points after a necropsy, including full decomposition 17 days later (NOAA Fisheries permit 18786-01). These scans were organized and displayed on the site Sketchfab with annotations and made publically available as a “4D virtual necropsy” (the fourth dimension is time). After one month, our user survey indicated widespread interest in the platform by both the local community and worldwide by stranding professionals, researchers, and educators. We are unaware of another 3D scan involving a large whale with soft tissue for teaching, research, or public display, despite the ease of 3D scanning with current technologies and the wide-ranging applications

    Rapid Range Expansion of a Marine Ectotherm Reveals the Demographic and Ecological Consequences of Short-Term Variability in Seawater Temperature and Dissolved Oxygen

    No full text
    The distributions of marine ectotherms are governed by physiological sensitivities to long-term trends in seawater temperature and dissolved oxygen. Short-term variability in these parameters has the potential to facilitate rapid range expansions, and the resulting ecological and socioeconomic consequences may portend those of future marine communities. Here, we combine physiological experiments with ecological and demographic surveys to assess the causes and consequences of sudden but temporary poleward range expansions of a marine ectotherm with considerable life history plasticity (California market squid, Doryteuthis opalescens). We show that sequential factors related to resource accessibility in the core range—the buildup of large populations as a result of competitive release and climate-associated temperature increase and oxygen loss that constrain aerobic activity—may drive these expansions. We also reveal that poleward range expansion alters the body size—and therefore trophic role—of invading populations, with potential negative implications for socioeconomically valuable resident species. To help forecast rapid range expansions of marine ectotherms, we advocate that research efforts focus on factors impacting resource accessibility in core ranges. Determining how environmental conditions in receiving ecosystems affect body size and how body size is related to trophic role will help refine estimates of the impacts of future marine communities

    A collaborative and near-comprehensive North Pacific humpback whale photo-ID dataset

    Get PDF
    Abstract We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97–99% accuracy. For the 2001–2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change
    corecore