1,395 research outputs found

    A contextual extension of Spekkens' toy model

    Full text link
    Quantum systems show contextuality. More precisely, it is impossible to reproduce the quantum-mechanical predictions using a non-contextual realist model, i.e., a model where the outcome of one measurement is independent of the choice of compatible measurements performed in the measurement context. There has been several attempts to quantify the amount of contextuality for specific quantum systems, for example, in the number of rays needed in a KS proof, or the number of terms in certain inequalities, or in the violation, noise sensitivity, and other measures. This paper is about another approach: to use a simple contextual model that reproduces the quantum-mechanical contextual behaviour, but not necessarily all quantum predictions. The amount of contextuality can then be quantified in terms of additional resources needed as compared with a similar model without contextuality. In this case the contextual model needs to keep track of the context used, so the appropriate measure would be memory. Another way to view this is as a memory requirement to be able to reproduce quantum contextuality in a realist model. The model we will use can be viewed as an extension of Spekkens' toy model [Phys. Rev. A 75, 032110 (2007)], and the relation is studied in some detail. To reproduce the quantum predictions for the Peres-Mermin square, the memory requirement is more than one bit in addition to the memory used for the individual outcomes in the corresponding noncontextual model.Comment: 10 page

    Loopholes in Bell Inequality Tests of Local Realism

    Full text link
    Bell inequalities are intended to show that local realist theories cannot describe the world. A local realist theory is one where physical properties are defined prior to and independent of measurement, and no physical influence can propagate faster than the speed of light. Quantum-mechanical predictions for certain experiments violate the Bell inequality while a local realist theory cannot, and this shows that a local realist theory cannot give those quantum-mechanical predictions. However, because of unexpected circumstances or "loopholes" in available experiment tests, local realist theories can reproduce the data from these experiments. This paper reviews such loopholes, what effect they have on Bell inequality tests, and how to avoid them in experiment. Avoiding all these simultaneously in one experiment, usually called a "loophole-free" or "definitive" Bell test, remains an open task, but is very important for technological tasks such as device-independent security of quantum cryptography, and ultimately for our understanding of the world.Comment: 42 pages, 2 figure

    No information flow using statistical fluctuations, and quantum cryptography

    Full text link
    The communication protocol of Home and Whitaker [Phys. Rev. A 67, 022306 (2003)] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on simple post-selection of suitable experimental runs. The quantum cryptography protocol proposed in the same publication is also examined, and is found to indeed need quantum properties for the system to be secure. However, the security test proposed in the mentioned paper is found to be insufficient, and a modification is proposed here that will ensure security.Comment: revtex4, 9 page

    Comment on "New Results on Frame-Proof Codes and Traceability Schemes"

    Full text link
    In the paper "New Results on Frame-Proof Codes and Traceability Schemes" by Reihaneh Safavi-Naini and Yejing Wang [IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 3029-3033, Nov. 2001], there are lower bounds for the maximal number of codewords in binary frame-proof codes and decoders in traceability schemes. There are also existence proofs using a construction of binary frame-proof codes and traceability schemes. Here it is found that the main results in the referenced paper do not hold.Comment: 3 page

    Quantum Simulation Logic, Oracles, and the Quantum Advantage

    Full text link
    Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how quantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific algorithms, like the Deutsch-Jozsa and Simon's algorithms, there simply is no advantage in terms of query complexity. This does not detract from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shor's algorithm for integer factorization.Comment: 48 pages, 46 figure

    Bell Inequalities for Position Measurements

    Full text link
    Bell inequalities for position measurements are derived using the bits of the binary expansion of position-measurement results. Violations of these inequalities are obtained from the output state of the Non-degenerate Optical Parametric Amplifier.Comment: revtex4, 2 figure
    corecore