14 research outputs found

    Excess cardiovascular mortality associated with cold spells in the Czech Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between cardiovascular mortality and winter cold spells was evaluated in the population of the Czech Republic over 21-yr period 1986–2006. No comprehensive study on cold-related mortality in central Europe has been carried out despite the fact that cold air invasions are more frequent and severe in this region than in western and southern Europe.</p> <p>Methods</p> <p>Cold spells were defined as periods of days on which air temperature does not exceed -3.5°C. Days on which mortality was affected by epidemics of influenza/acute respiratory infections were identified and omitted from the analysis. Excess cardiovascular mortality was determined after the long-term changes and the seasonal cycle in mortality had been removed. Excess mortality during and after cold spells was examined in individual age groups and genders.</p> <p>Results</p> <p>Cold spells were associated with positive mean excess cardiovascular mortality in all age groups (25–59, 60–69, 70–79 and 80+ years) and in both men and women. The relative mortality effects were most pronounced and most direct in middle-aged men (25–59 years), which contrasts with majority of studies on cold-related mortality in other regions. The estimated excess mortality during the severe cold spells in January 1987 (+274 cardiovascular deaths) is comparable to that attributed to the most severe heat wave in this region in 1994.</p> <p>Conclusion</p> <p>The results show that cold stress has a considerable impact on mortality in central Europe, representing a public health threat of an importance similar to heat waves. The elevated mortality risks in men aged 25–59 years may be related to occupational exposure of large numbers of men working outdoors in winter. Early warnings and preventive measures based on weather forecast and targeted on the susceptible parts of the population may help mitigate the effects of cold spells and save lives.</p

    Projections of Temperature-related Excess Mortality Under Climate Change Scenarios

    Get PDF
    Summary Background Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks

    Ambient Particulate Air Pollution and Daily Mortality in 652 Cities.

    Get PDF
    BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 ÎŒm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 ÎŒm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 ÎŒg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.)

    Zmeny ve vyskytu extremnich teplotnich jevu

    No full text
    This study deals with heat waves and issues concerning changes in their occurrence. Heat waves have not yet been analyzed in a complex way in the Czech Republic, as regard for instance their temporal and spatial variability and relationship to atmospheric circulation. A part of the thesis concentrates on a comparison of various approaches to climate modelling from the point of view of the ability of the models to simulate characteristics of extreme temperature events, which are closely related to statistical properties of time seriesAvailable from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes

    No full text
    This paper presents an overview of recent observational studies on the Clausius-Clapeyron precipitation-temperature (P-T) scaling in midlatitudes. As the capacity of air to hold moisture increases in connection with increasing temperature, extreme precipitation events may become more abundant and intense. The capacity of air to hold moisture is governed by the Clausius-Clapeyron (CC) relation, approximately 7% per &deg;C. Departures from this, so called super-CC scaling and sub-CC scaling, are consequences of different factors (moisture availability, type of precipitation, annual cycle, the percentile of precipitation intensity and regional weather patterns). Since the moisture availability and enhanced convection were considered as the most important drivers governing the P-T scaling, dew point temperature as a scaling variable is discussed in detail and methods of disaggregation of precipitation events into convective and non-convective are also reviewed

    Effect modification of greenness on the association between heat and mortality: A multi-city multi-country study

    No full text
    Background Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. Methods We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different green-space groups (low, medium, and high), which were divided into terciles among 452 locations. Findings Cities with high greenspace value had the lowest heat-mortality relative risk of 1.19 (95% CI: 1.13, 1.25), while the heat-related relative risk was 1.46 (95% CI: 1.31, 1.62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9.02% (95% CI: 8.88, 9.16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. Interpretation Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change.Copyright (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Y

    Short term association between ozone and mortality : global two stage time series study in 406 locations in 20 countries

    No full text
    OBJECTIVE : To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. DESIGN : Two stage time series analysis. SETTING : 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. POPULATION : Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES : Daily total mortality (all or non-external causes only). RESULTS : A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 ÎŒg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 ÎŒg/ m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 ÎŒg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. CONCLUSIONS : Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.This work was primarily supported by the UK Medical Research Council (MR/M022625/1 and MR/R013349/1) and by the UK Natural Environment Research Council (NE/R009384/1). HaK was supported by the National Natural Science Foundation of China (91843302 and 91643205) and China Medical Board Collaborating Program (16-250). JM was supported by the Fundação para a CiĂȘncia e a Tecnologia (FCT) through the scholarship SFRH/ BPD/115112/2016. VH was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, PCIN-2017-046) and the German Federal Ministry of Education and Research (BMBF, 01LS1201A2). AU and JK were supported by the Czech Science Foundation (18-22125S). HO and EI were supported by the Estonian Ministry of Education and Research (IUT34-17). AT was supported by the Japanese Society for the Promotion of Science invitational fellowships for research in Japan (S18149). YG was supported by the career development fellowship of the Australian National Health and Medical Research Council (APP1107107 and APP1163693). ST was supported by the Science and Technology Commission of Shanghai Municipality (18411951600). HoK was supported by the Global Research Laboratory (#K21004000001-10A0500-0710) through the National Research Foundation of Korea and by the Future Planning and Korea Ministry of Environment as the “Climate Change Correspondence R&D Program” (2013001310002). RMG was supported by a CSIR parliamentary grant. NS is supported by the National Institute of Environmental Health Sciences funded HERCULES Centre (P30ES019776).http://www.bmj.com/thebmjam2020Geography, Geoinformatics and Meteorolog
    corecore