32 research outputs found

    Natalizumab Induces Changes of Cerebrospinal Fluid Measures in Multiple Sclerosis

    No full text
    Background: There is a lack of knowledge about the evolution of cerebrospinal fluid (CSF) markers in multiple sclerosis (MS) patients undergoing natalizumab treatment. Aim: We aimed to evaluate the effect of natalizumab on basic inflammatory CSF and MRI measures. Methods: Together, 411 patients were screened for eligibility and 93 subjects with ≥2 CSF examinations ≤6 months before and ≥12 months after natalizumab initiation were recruited. The effect of natalizumab on CSF as well as clinical and paraclinical measures was analyzed using adjusted mixed models. Results: Natalizumab induced a decrease in CSF leukocytes (p −15), CSF protein (p = 0.00007), the albumin quotient (p = 0.007), the IgG quotient (p = 6 × 10−15), the IgM quotient (p = 0.0002), the IgG index (p = 0.0004), the IgM index (p = 0.003) and the number of CSF-restricted oligoclonal bands (OCBs) (p = 0.0005). CSF-restricted OCBs positivity dropped from 94.6% to 86% but 26 patients (28%) had an increased number of OCBs at the follow-up. The baseline to follow-up EDSS and T2-LV were stable; a decrease in the relapse rate was consistent with a decrease in the CSF inflammatory markers and previous knowledge about the effectiveness of natalizumab. The average annualized brain volume loss during the follow-up was −0.50% (IQR = −0.96, −0.16) and was predicted by the baseline IgM index (B = −0.37; p = 0.003). Conclusions: Natalizumab is associated with a reduction of basic CSF inflammatory measures supporting its strong anti-inflammatory properties. The IgM index at the baseline predicted future brain volume loss during the course of natalizumab treatment

    Deep Gray Matter Iron Content in Neuromyelitis Optica and Multiple Sclerosis

    No full text
    Background. Neuromyelitis optica (NMO) and multiple sclerosis (MS) are often presenting with overlapping symptoms. The aim of this study was to determine whether and how NMO and MS differ regarding cerebral iron deposits in deep gray matter (DGM) and the correlation between iron deposition and clinical severity as well as to regional atrophy of the DGM. Methods. We analyzed 20 patients with NMO, 40 patients with a relapsing-remitting (RR) form of MS, and 20 healthy controls with 1.5T MRI. Quantitative susceptibility mapping (QSM) was performed to estimate iron concentration in the DGM. Results. Patients with NMO have higher magnetic susceptibility values in the substantia nigra compared to healthy controls. RRMS patients have lower magnetic susceptibility values in the thalamus compared to healthy controls and NMO patients. Atrophy of the thalamus, pulvinar, and putamen is significant both in RRMS compared to NMO patients and healthy controls. A correlation was found between the disability score (EDSS) and magnetic susceptibility in the putamen in RRMS. Conclusions. This study confirms that a disturbed cerebral iron homeostasis in patients with NMO occurs in different structures than in patients with RRMS. Increased magnetic susceptibility in substantia nigra in NMO and decreased magnetic susceptibility within the thalamus in RRMS were the only significant differences in the study sample. We could confirm that iron concentration in the thalami is decreased in RRMS compared to that in the HC group. Positive association was found between putaminal iron and EDSS in RRMS

    Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy

    No full text
    Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS

    MRI correlates of disability progression in patients with CIS over 48 months

    Get PDF
    Background: Gray matter (GM) and white matter (WM) pathology has an important role in disease progression of multiple sclerosis (MS). Objectives: To investigate the association between the development of GM and WM pathology and clinical disease progression in patients with clinically isolated syndrome (CIS). Methods: This prospective, observational, 48-month follow-up study examined 210 CIS patients treated with 30 µg of intramuscular interferon beta-1a once a week. MRI and clinical assessments were performed at baseline, 6, 12, 24, 36 and 48 months. Associations between clinical worsening [24-weeks sustained disability progression (SDP) and occurrence of a second clinical attack] and longitudinal changes in lesion accumulation and brain atrophy progression were investigated by a mixed-effect model analysis after correction for multiple comparisons. Results: SDP was observed in 32 (15.2%) CIS patients, while 146 (69.5%) were stable and 32 (15.2%) showed sustained disability improvement. 112 CIS patients (53.3%) developed clinically definite MS (CDMS). CIS patients who developed SDP showed increased lateral ventricle volume (p < .001), and decreased GM (p = .011) and cortical (p = .001) volumes compared to patients who remained stable or improved in disability. Converters to CDMS showed an increased rate of accumulation of number of new/enlarging T2 lesions (p < .001), decreased whole brain (p = .007) and increased lateral ventricle (p = .025) volumes. Conclusions: Development of GM pathology and LVV enlargement are associated with SDP. Conversion to CDMS in patients with CIS over 48 months is dependent on the accumulation of new lesions, LVV enlargement and whole brain atrophy progression

    Volumetric MRI Markers and Predictors of Disease Activity in Early Multiple Sclerosis: A Longitudinal Cohort Study

    Get PDF
    <div><h3>Objectives</h3><p>To compare clinical and MRI parameters between patients with clinically isolated syndrome and those converting to clinically definite multiple sclerosis within 2 years, to identify volumetric MRI predictors of this conversion and to assess effect of early relapses.</p> <h3>Methods</h3><p>The SET study comprised 220 patients with clinically isolated syndrome treated with interferon beta (mean age, 29 years; Expanded Disability Status Scale, 1.5). Three patients with missing data were excluded from the analysis. Physical disability, time to clinically definite multiple sclerosis and volumetric MRI data were recorded for 2 years.</p> <h3>Results</h3><p>Patients reaching clinically definite multiple sclerosis showed impaired recovery of neurological function, faster decrease in corpus callosum cross-sectional area, higher T2 lesion volume and more contrast-enhancing lesions. Six-month decrease in corpus callosum cross-sectional area (≥1%) and baseline T2 lesion volume (≥5 cm<sup>3</sup>) predicted clinically definite multiple sclerosis within 2 years (hazard ratios 2.5 and 1.8, respectively). Of 22 patients fulfilling both predictive criteria, 83% reached clinically definite multiple sclerosis (hazard ratio 6.5). More relapses were associated with poorer recovery of neurological function and accelerated brain atrophy.</p> <h3>Conclusions</h3><p>Neurological impairment is more permanent, brain atrophy is accelerated and focal inflammatory activity is greater in patients converting to clinically definite multiple sclerosis. Six-month corpus callosum atrophy and baseline T2 lesion volume jointly help predict individual risk of clinically definite multiple sclerosis. Early relapses contribute to permanent damage of the central nervous system.</p> </div

    Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study

    No full text
    Objectives: To investigate spatial patterns of gray matter (GM) atrophy and their association with disability progression in patients with early relapsing-remitting multiple sclerosis (MS) in a longitudinal setting. Methods: Brain MRI and clinical neurological assessments were obtained in 152 MS patients at baseline and after 10years of follow-up. Patients were classified into those with confirmed disability progression (CDP) (n=85) and those without CDP (n=67) at the end of the study. An optimized, longitudinal source-based morphometry (SBM) pipeline, which utilizes independent component analysis, was used to identify eight spatial patterns of common GM volume co-variation in a data-driven manner. GM volume at baseline and rates of change were compared between patients with CDP and those without CDP. Results: The identified patterns generally included structurally or functionally related GM regions. No significant differences were detected at baseline GM volume between the sub-groups. Over the follow-up, patients with CDP experienced a significantly greater rate of GM atrophy within two of the eight patterns, after correction for multiple comparisons (corrected p-values of 0.001 and 0.007). The patterns of GM atrophy associated with the development of CDP included areas involved in motor functioning and cognitive domains such as learning and memory. Conclusion: SBM analysis offers a novel way to study the temporal evolution of regional GM atrophy. Over 10years of follow-up, disability progression in MS is related to GM atrophy in areas associated with motor and cognitive functioning. Keywords: Multiple sclerosis, Disability, MRI, Atrophy, Gray matte

    Demographic, clinical and MRI characteristics of the sample.

    No full text
    *<p>t-test, Mann-Whitney U or χ2 tests; T2 lesion volumes and cumulative number of Gd+lesions were compared after logarithmic transformation.</p><p>CDMS, clinically definite multiple sclerosis; CIS, clinically isolated syndrome; EDSS, Expanded Disability Status Scale; Gd+, gadolinium positive; GM, grey matter; MSFC, Multiple Sclerosis Functional Composite; NS, not significant; SD, standard deviation; WM, white matter.</p

    Disability and volumetric MRI parameters in patients with CIS and in those converting to CDMS.

    No full text
    <p>Dashed lines delineate 95% confidence intervals. Statistically significant p-values are shown. CIS, clinically isolated syndrome; CDMS, clinically definite multiple sclerosis; EDSS, Expanded Disability Status Scale; Gd+, gadolinium positive; MSFC, Multiple Sclerosis Functional Composite.</p

    Cumulative risk of CDMS by number of volumetric MRI predictors.

    No full text
    <p>The MRI predictors found to be statistically significant by the logistic model were tested. These comprised decrease in corpus callosum area at 6 months ≥1%, and baseline T2 lesion volume ≥5 cm<sup>3</sup>. Hazard ratios with 95% confidence intervals are shown. CDMS, clinically definite multiple sclerosis, HR, hazard ratio.</p
    corecore