71 research outputs found

    Neck Pain and Disability Scale and the Neck Disability Index: reproducibility of the Dutch Language Versions

    Get PDF
    The first aim of this study was to translate the Neck Pain and Disability Scale (NPAD) from English into Dutch producing the NPAD–Dutch Language Version (DLV). The second aim was to analyze test–retest reliability and agreement of the NPAD–DLV and the Neck Disability Index (NDI)–DLV. The NPAD was translated according to established guidelines. Thirty-four patients (mean age 37.5Β years, 68% female) with chronic neck pain (CNP), within an outpatient rehabilitation setting, participated in this study. The NPAD–DLV and the NDI–DLV were filled out twice with a mean test–retest interval of 18Β days. The intraclass correlation coefficient of the NPAD–DLV was 0.76 (95% confidence interval (CI) 0.57–0.87) and of the NDI–DLV 0.84 (95% CI 0.69–0.92). The limits of agreement of the NPAD–DLV and the NDI–DLV were, respectively, Β±20.9 (scale 0–100) and Β±6.5 (scale 0–50). The reliability of the NPAD–DLV and the NDI–DLV was acceptable for patients with CNP. The variation (β€˜instability’) in the NPAD–DLV total scores was relatively large and larger than the variation of the NDI–DLV

    Atherosclerotic renal artery stenosis is prevalent in cardiorenal patients but not associated with left ventricular function and myocardial fibrosis as assessed by cardiac magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerotic renal artery stenosis (ARAS) is common in cardiovascular diseases and associated with hypertension, renal dysfunction and/or heart failure. There is a paucity of data about the prevalence and the role of ARAS in the pathophysiology of combined chronic heart failure (CHF) and chronic kidney disease (CKD). We investigated the prevalence in patients with combined CHF/CKD and its association with renal function, cardiac dysfunction and the presence and extent of myocardial fibrosis.</p> <p>Methods</p> <p>The EPOCARES study (ClinTrialsNCT00356733) investigates the role of erythropoietin in anaemic patients with combined CHF/CKD. Eligible subjects underwent combined cardiac magnetic resonance imaging (cMRI), including late gadolinium enhancement, with magnetic resonance angiography of the renal arteries (MRA).</p> <p>Results</p> <p>MR study was performed in 37 patients (median age 74 years, eGFR 37.4 ± 15.6 ml/min, left ventricular ejection fraction (LVEF) 43.3 ± 11.2%), of which 21 (56.8%) had ARAS (defined as stenosis >50%). Of these 21 subjects, 8 (21.6%) had more severe ARAS >70% and 8 (21.6%) had a bilateral ARAS >50% (or previous bilateral PTA). There were no differences in age, NT-proBNP levels and medication profile between patients with ARAS versus those without. Renal function declined with the severity of ARAS (p = 0.03), although this was not significantly different between patients with ARAS versus those without. Diabetes mellitus was more prevalent in patients without ARAS (56.3%) against those with ARAS (23.8%) (p = 0.04). The presence and extent of late gadolinium enhancement, depicting myocardial fibrosis, did not differ (p = 0.80), nor did end diastolic volume (p = 0.60), left ventricular mass index (p = 0.11) or LVEF (p = 0.15). Neither was there a difference in the presence of an ischemic pattern of late enhancement in patients with ARAS versus those without.</p> <p>Conclusions</p> <p>ARAS is prevalent in combined CHF/CKD and its severity is associated with a decline in renal function. However, its presence does not correlate with a worse LVEF, a higher left ventricular mass or with the presence and extent of myocardial fibrosis. Further research is required for the role of ARAS in the pathophysiology of combined chronic heart and renal failure.</p

    Durability of treatment effects of the Sleep Position Trainer versus oral appliance therapy in positional OSA: 12-month follow-up of a randomized controlled trial

    Get PDF
    The Sleep Position Trainer (SPT) is a new option for treating patients with positional obstructive sleep apnea (POSA). This study investigated long-term efficacy, adherence, and quality of life during use of the SPT device compared with oral appliance therapy (OAT) in patients with POSA. This prospective, multicenter trial randomized patients with mild to moderate POSA (apnea-hypopnea index [AHI] 5-30/h) to SPT or OAT. Polysomnography was performed at baseline and after 3 and 12 months' follow-up. The primary endpoint was OSA severity; adherence, quality of life, and adverse events were also assessed. Ninety-nine patients were randomized and 58 completed the study (29 in each group). Median AHI in the SPT group decreased from 13.2/h at baseline to 7.1/h after 12 months (P < 0.001); corresponding values in the OAT group were 13.4/h and 5.0/h (P < 0.001), with no significant between-group difference (P = 1.000). Improvements throughout the study were maintained at 12 months. Long-term median adherence was also similar in the two treatment groups; the proportion of patients who used their device for β‰₯ 4 h for 5 days in a week was 100% in the SPT group and 97.0% in the OAT group (P = 0.598). The efficacy of SPT therapy was maintained over 12 months and was comparable to that of OAT in patients with mild to moderate POSA. Adherence was relatively high, and similar in the two groups. www.clinicaltrials.gov (NCT02045576

    Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    Get PDF
    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins. Methodology/Principal Findings: In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg 2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of β€œsurvival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    Age-Related Neuronal Degeneration: Complementary Roles of Nucleotide Excision Repair and Transcription-Coupled Repair in Preventing Neuropathology

    Get PDF
    Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR–deficient Csaβˆ’/βˆ’ and Csbβˆ’/βˆ’ CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER–deficient Xpaβˆ’/βˆ’ and Xpcβˆ’/βˆ’ XP mice, but also occurred in XpdXPCS mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR–deficient mice are compatible with focal dysmyelination in CS patients. Both TCR–deficient and NER–deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csaβˆ’/βˆ’, Csbβˆ’/βˆ’) or highly sporadic (Xpaβˆ’/βˆ’, Xpcβˆ’/βˆ’) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR–deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csaβˆ’/βˆ’ and Csbβˆ’/βˆ’ TCR–deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR–deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival

    Oxidative stress in the developing brain: effects of postnatal glucocorticoid therapy and antioxidants in the rat.

    Get PDF
    In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg x kg(-1) x day(-1)), with or without antioxidant vitamins C and E (DEXCE; 200 mg x kg(-1) x day(-1) and 100 mg x kg(-1) x day(-1), respectively), on postnatal days 1-6 (P1-6). Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4Β±34.7 mm(3) vs. 564.0Β±20.0 mm(3)), the soma volume of neurons in the CA1 (1172.6Β±30.4 Β΅m(3) vs. 1002.4Β±11.8 Β΅m(3)) and in the dentate gyrus (525.9Β±27.2 Β΅m(3) vs. 421.5Β±24.6 Β΅m(3)) of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%). Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5Β±43.1 mm(3)), and soma volume of neurons in the CA1 (1157.5Β±42.4 Β΅m(3)) and the dentate gyrus (536.1Β±27.2 Β΅m(3)). Hsp70 protein expression was unaltered in the cortex (+9%), however, 4-HNE (+95%) and NT (+24%) protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22%) and in the hippocampus (NT: +35%). Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended
    • …
    corecore