5 research outputs found

    Permafrost in den argentinischen Anden, ein bedeutender Wasserspeicher

    No full text
    Die semi-ariden Zentralanden Argentiniens werden durch eine weitfl Ă€chige erbreitung von Permafrost und eine große vertikale Erstreckung von periglazialen Formen und Prozessen charakterisiert. Große Blockgletscherkomplexe mit eisreichem Permafrost werden in den Trockengebieten der Anden als bedeutende Wasserspeicher fĂŒr die Zukunft angesehen. Die argentinische Regierung hat 2010 ein Gesetz zum Schutz der Gletscher und der periglazialen Höhenstufe erlassen, um diese Naturressourcen zu schĂŒtzen. Die vorliegende Studie hat das Ziel, die Verbreitung der Blockgletscher aufzuzeigen und die wenig bekannten Eisgehalte dieser Periglazialformen zu quantifi zieren.Fil: Christian Halla. Universitat Bonn; AlemaniaFil: Jan Henrik Blöthe. Universitat Bonn; AlemaniaFil: Trombotto, Dario Tomas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Lothar Schrott. Universitat Bonn; Alemani

    Deciphering Small-Scale Seasonal Surface Dynamics of Rock Glaciers in the Central European Alps Using DInSAR Time Series

    Get PDF
    The Essential Climate Variable (ECV) Permafrost is currently undergoing strong changes due to rising ground and air temperatures. Surface movement, forming characteristic landforms such as rock glaciers, is one key indicator for mountain permafrost. Monitoring this movement can indicate ongoing changes in permafrost; therefore, rock glacier velocity (RGV) has recently been added as an ECV product. Despite the increased understanding of rock glacier dynamics in recent years, most observations are either limited in terms of the spatial coverage or temporal resolution. According to recent studies, Sentinel-1 (C-band) Differential SAR Interferometry (DInSAR) has potential for monitoring RGVs at high spatial and temporal resolutions. However, the suitability of DInSAR for the detection of heterogeneous small-scale spatial patterns of rock glacier velocities was never at the center of these studies. We address this shortcoming by generating and analyzing Sentinel-1 DInSAR time series over five years to detect small-scale displacement patterns of five high alpine permafrost environments located in the Central European Alps on a weekly basis at a range of a few millimeters. Our approach is based on a semi-automated procedure using open-source programs (SNAP, pyrate) and provides East-West displacement and elevation change with a ground sampling distance of 5 m. Comparison with annual movement derived from orthophotos and unpiloted aerial vehicle (UAV) data shows that DInSAR covers about one third of the total movement, which represents the proportion of the year suited for DInSAR, and shows good spatial agreement (Pearson R: 0.42–0.74, RMSE: 4.7–11.6 cm/a) except for areas with phase unwrapping errors. Moreover, the DInSAR time series unveils spatio-temporal variations and distinct seasonal movement dynamics related to different drivers and processes as well as internal structures. Combining our approach with in situ observations could help to achieve a more holistic understanding of rock glacier dynamics and to assess the future evolution of permafrost under changing climatic conditions

    Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements

    Get PDF
    Ongoing global warming intensifies the degradation of permafrost. Permafrost thawing impacts landform evolution, reduces freshwater resources, enhances the potential of natural hazards and thus has significant socio-economic impacts. Electrical resistivity tomography (ERT) has been widely used to map the ice-containing permafrost by its resistivity contrast compared to the surrounding unfrozen medium. This study aims to reveal the effects of ongoing climate warming on mountain permafrost by repeating historical ERT and analyzing the temporal changes in the resistivity distribution. In order to facilitate the measurements, we introduce and discuss the employment of textile electrodes. These newly developed electrodes significantly reduce working effort, are easy to deploy on blocky surfaces and yield sufficiently low contact resistances. We analyze permafrost evolution on three periglacial landforms (two rock glaciers and one talus slope) in the Swiss and Austrian Alps by repeating historical surveys after 10, 12 and 16 years, respectively. The resistivity values have been significantly reduced in ice-poor permafrost landforms at all study sites. Interestingly, resistivity values related to ice-rich permafrost in the studied active rock glacier partly increased during the studied time period. To explain this apparently counterintuitive (in view of increased resistivity) observation, geomorphological circumstances, such as the relief and increased creep velocity of the active rock glacier, are discussed by using additional remote sensing data. The present study highlights ice-poor permafrost degradation in the Alps resulting from ever-accelerating global warming

    Surface velocity fields of active rock glaciers and ice‐debris complexes in the Central Andes of Argentina

    No full text
    Rock glaciers and transitional ice‐debris complexes predominate the Central Andean landform assemblage, yet regional studies on their state of activity and their kinematics remain sparse. Here we utilize the national glacier inventory of Argentina to quantify surface velocity fields of 244 rock glaciers and 51 ice‐debris complexes, located in the CordĂłn del Plata range, Argentina. Applying a feature‐tracking approach to repeated RapidEye satellite imagery acquired between 2010 and 2017/18, we find mean displacement rates between 0.37 and 2.61 m year−1 for 149 landforms, while for the remaining 146 features, surface movement remains below our level of detection. We compare our satellite‐derived velocity fields with ground‐truth data from two local field sites and find closely matching results in magnitude and spatial distribution. With average displacement of one‐third of the active rock glaciers and ice‐debris complexes exceeding 1 m year−1, the region hosts an exceptional number of fast‐flowing periglacial landforms, compared to other mountain belts. Using a random forest model, we test the predictive power of 25 morphometric and topoclimatic candidate predictors for modelling the state of activity of rock glaciers and ice‐debris complexes on two different scales. For entire landforms and individual landform segments, constructed along displacement centrelines, we can predict the state of activity with overall accuracies of 70.08% (mean AUROC = 0.785) and 74.86% (mean AUROC = 0.753), respectively. While topoclimatic parameters such as solar radiation and elevation are most important for entire landforms, geometric parameters become more important at the scale of landform segments. Despite tentative correlations between local slope and surface kinematics, our results point to factors integrating slope and distance to the source to govern local deformation. We conclude that feature tracking in optical imagery is feasible for regional studies in remote regions and provides valuable insight into the current state of the Andean cryosphere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons LtdOur study quantifies the surface kinematics of 295 rock glaciers and ice‐debris complexes in the Central Andes using feature tracking in optical satellite imagery. We find nearly half of these are actively moving, with high average rates between 0.38 and 2.36 m year−1. Using a random forest modelling approach, we find topoclimatic predictors to have the highest importance for predicting the state of activity of entire landforms, while geometric predictors become more important on the scale of individual landform segments.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsches Zentrum fĂŒr Luft‐ und Raumfahrt http://dx.doi.org/10.13039/50110000294
    corecore