34 research outputs found

    Identifying the Determinants of Attitudes towards Immigrants - A Structural Cross-Country Analysis

    Get PDF
    Utilizing subjective data to infer on fundamental issues of individual opinion is associated with severe conceptual and methodological problems.This paper addresses these problems and investigates the attitudes towards immigrants within a cross-country framework. To this end, we utilize data from the first wave of the European Social Survey (ESS) in a structural latent variable model. The determinants of attitudes towards immigrants are estimated by employing different identification restrictions on the model. Our results suggest that educational attainment as well as parental education are the main driving forces behind attitudes formation.Average attitudes across countries further seem to increase with per capita GDP. All our findings are stable across countries and identification strategies.Subjective Data, Identification, Minorities

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies

    Get PDF
    Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells’ (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo–derived senescence signature (SenSig) using a foreign body response–driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and “cartilage-like” fibroblasts as senescent and defined cell type–specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34–CSF1R–TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.</p

    Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies

    Get PDF
    Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells’ (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo–derived senescence signature (SenSig) using a foreign body response–driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and “cartilage-like” fibroblasts as senescent and defined cell type–specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34–CSF1R–TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.</p

    Whole cell patch clamp recording performed on a planar glass chip.

    Get PDF
    The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled experimenter to micromanipulate a glass pipette under a microscope to record from one cell at a time. Here we report on a planar, microstructured quartz chip for whole cell patch clamp measurements without micromanipulation or visual control. A quartz substrate of 200 microm thickness is perforated by wet etching techniques resulting in apertures with diameters of approximately 1 microm. The apertures replace the tip of glass pipettes commonly used for patch clamp recording. Cells are positioned onto the apertures from suspension by application of suction. Whole cell recordings from different cell types (CHO, N1E-115 neuroblastoma) are performed with microstructured chips studying K(+) channels and voltage gated Ca(2+) channels
    corecore